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Non-Determinism

P result varies from run to run
P sometimes OK (in certain randomized algorithms)
» mostly a bug.

x=0
parallel for i « 1 to 2 do
x+ex+1

P nondeterministic unless incrementing x is
atomic
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Racy execution

P all possible topological sorts are

r=0 valid execution orders
- e/x T\f P P In particular it's not hard for
2 L both loads to complete before
incr 7 | | incr ry either store

L I P In practice there are various

LT | T synchronization strategies

L (locks, etc...).

print x

P Here we will insist that parallel
strands are independent



Racy demo

#pragma omp parallel for
for (int i=0; i<10000; i-++){
X+t
+

P what is the final value of x?



We can write bad code with spawn too

P here we have the same

Su@(l p .J). non-deterministic interleaving of
if (1>3) . .
reading and writing x
return; ) ) _
if (i==9) P the style is a bit unnatural, in
X+ particular we are not using the
else return value of spawn at all.
m=(i+j)/2;

spawn sum(i,m);
sum(m+1,j);
sync;



spawn race demo

static void
sum(long i, long j,
if (i>3)
return,
if (i==j) A
(xout) ++ ;
} else {
long m=(i+j)/2;
#pragma omp task
sum(i,m,out);
sum(m+1,j, out);
#pragma omp taskwait
1

long *out) {



Being more functional helps

sum(i, j)
if (i>j) return O;
if (i==j) return i;
P each strand writes into
m o« (i+j)/2; different variables

left « spawn sum(i,m);
right + sum(m+1,j);
sync;

return left + right;



Being more functional helps

sum(i, j)
if (i>j) return O;
if (i==j) return i;
P each strand writes into

m o« (i+j)/2; different variables
P sync is used as a barrier to
left « spawn sum(i,m); serialize
right « sum(m+1,j);
sync;

return left + right;



functional sum demo

long sum(long i, long j) A
if (i>j) return O;
if (i==j) {
return 1i;
} else {
long left,right ,m=(i+j)/2;
#pragma omp task shared(left)
left = sum(i,m);
right = sum(m+1,j);
#pragma omp taskwait
return left+right;

+
1



Single Writer races

P> arguments to spawned routines are
evaluated in the parent context

X + spawn foo(x)
y + foo(x)
sync



Single Writer races
P> arguments to spawned routines are
evaluated in the parent context
P but this isn't enough to be race free.

X + spawn foo(x)
y + foo(x)
sync



Single Writer races

P> arguments to spawned routines are
evaluated in the parent context

P but this isn't enough to be race free.

P which value z is passed to the second call
of 'foo’ depends how long the first one
takes.

X + spawn foo(x)
y + foo(x)
sync
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Scheduling
Scheduling Problem

Abstractly Mapping threads to processors
Pragmatically Mapping logical threads to a thread pool.

Ideal Scheduler

On-Line No advance knowledge of when threads will spawn or
complete.

Distributed No central controller.

P to simplify analysis, we relax the second condition
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strands to processors.



A greedy centralized scheduler

Maintain a ready queue of strands ready to run.
Scheduling Step

Complete Step If > p (# processors) strands are ready, assign p
strands to processors.

Incomplete Step Otherwise, assign all waiting strands to processors



A greedy centralized scheduler

Maintain a ready queue of strands ready to run.
Scheduling Step

Complete Step If > p (# processors) strands are ready, assign p
strands to processors.

Incomplete Step Otherwise, assign all waiting strands to processors

P To simplify analysis, split any non-unit strands into a chain of
unit strands



A greedy centralized scheduler

Maintain a ready queue of strands ready to run.
Scheduling Step

Complete Step If > p (# processors) strands are ready, assign p
strands to processors.

Incomplete Step Otherwise, assign all waiting strands to processors

P To simplify analysis, split any non-unit strands into a chain of
unit strands
P Therefore, after one time step, we schedule again.
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Optimal and Approximate Scheduling

Recall

(work law) T,>T/p
(span) T,>T,
Therefore

Tp > maX<T1/p7Too) = Opt

With the greedy algorithm we can achieve

T
T, < ?1 + T, <2max(T,/p,T,.,) =2 x opt



Counting Complete Steps

P Let k be the number of complete steps.



Counting Complete Steps

P Let k be the number of complete steps.
P At each complete step we do p units of work.



Counting Complete Steps

P Let k be the number of complete steps.

P At each complete step we do p units of work.

P Every unit of work corresponds to one step of the serialization,
so kp <Tj.



Counting Complete Steps

P Let k be the number of complete steps.
P At each complete step we do p units of work.

P Every unit of work corresponds to one step of the serialization,
so kp <Tj.

P Therefore k < T} /p
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Counting Incomplete Steps
= A

\
"R ﬁ? P Let G be the DAG of remaining strands.

P ready queue = the set of sources in G

Y
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Counting Incomplete Steps

ﬁ? } Let G be the DAG of remaining strands.
/ = the set of sources in GG
v } In incomplete step runs all sources in G
P Every longest path starts at a source

P After an incomplete step, length of longest path shrinks by 1
P There can be at most 7. steps.
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Parallel Slackness

arallelism T
parallel slackness = P bm _
p pT
T T
speedup = — < —- = p x slackness
T, Ty

P If slackness < 1, speedup < p

P If slackness > 1, linear speedup achievable for
given number of processors
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Slackness and Scheduling

T
slackness := 1
px T

Theorem

For suf. large slackness,
greedy scheduler
approaches time Ty /p.

Suppose

T1/<p><Too) > c

T
(1) T,<=
cp

With the greedy scheduler,



Slackness and Scheduling

T T
lackness 1= — 1 1)  To<—
slackness P X T cp
With the greedy scheduler,
Theorem T
For suf. large slackness, T, < <_1 + Too)
p
greedy scheduler
approaches time Ty /p. Substituting (1),
Suppose T 1
PP Tp < 11 (1 n _>
D c

T1/<p><Too) > c
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