CS3383 Unit 4: dynamic multithreaded

algorithms lecture 1

David Bremner

March 20, 2024

QOutline

Dynamic Multithreaded Algorithms
Race Conditions
Scheduling

Race Conditions

Non-Determinism

P result varies from run to run
P sometimes OK (in certain randomized algorithms)
» mostly a bug.

Race Conditions

Non-Determinism

P result varies from run to run
P sometimes OK (in certain randomized algorithms)
» mostly a bug.

x=0
parallel for i « 1 to 2 do
x+ex+1

P nondeterministic unless incrementing x is
atomic

Racy execution

P all possible topological sorts are
valid execution orders

x =20
. N\
To4—T||T 2
T T
incr ry | |incr ry
T T
T 4Ty | |XT 1T
AN

print x

Racy execution

P all possible topological sorts are
valid execution orders

P In particular it's not hard for
both loads to complete before
either store

R

s N8

Ty <

—
a7
5

incr ry | | incr ry

T =Ty || T 4Ty
N N
print x

Racy execution

P all possible topological sorts are
valid execution orders

P In particular it's not hard for
both loads to complete before
either store

R

s N8

Ty <

—
a7
5

Inecr ry | | 1Iner rq
I I P In practice there are various
LT | T synchronization strategies

;rint; (locks, etc...).

Racy execution

P all possible topological sorts are

r=0 valid execution orders
- e/x T\f P P In particular it's not hard for
2 L both loads to complete before
incr 7 | | incr ry either store

L I P In practice there are various

LT | T synchronization strategies

L (locks, etc...).

print x

P Here we will insist that parallel
strands are independent

Racy demo

#pragma omp parallel for
for (int i=0; i<10000; i-++){
X+t
+

P what is the final value of x?

We can write bad code with spawn too

P here we have the same

Su@(l p .J). non-deterministic interleaving of
if (1>3) . .
reading and writing x
return;)) _
if (i==9) P the style is a bit unnatural, in
X+ particular we are not using the
else return value of spawn at all.
m=(i+j)/2;

spawn sum(i,m);
sum(m+1,j);
sync;

spawn race demo

static void
sum(long i, long j,
if (i>3)
return,
if (i==j) A
(xout) ++ ;
} else {
long m=(i+j)/2;
#pragma omp task
sum(i,m,out);
sum(m+1,j, out);
#pragma omp taskwait
1

long *out) {

Being more functional helps

sum(i, j)
if (i>j) return O;
if (i==j) return i;
P each strand writes into
m o« (i+j)/2; different variables

left « spawn sum(i,m);
right + sum(m+1,j);
sync;

return left + right;

Being more functional helps

sum(i, j)
if (i>j) return O;
if (i==j) return i;
P each strand writes into

m o« (i+j)/2; different variables
P sync is used as a barrier to
left « spawn sum(i,m); serialize
right « sum(m+1,j);
sync;

return left + right;

functional sum demo

long sum(long i, long j) A
if (i>j) return O;
if (i==j) {
return 1i;
} else {
long left,right ,m=(i+j)/2;
#pragma omp task shared(left)
left = sum(i,m);
right = sum(m+1,j);
#pragma omp taskwait
return left+right;

+
1

Single Writer races

P> arguments to spawned routines are
evaluated in the parent context

X + spawn foo(x)
y + foo(x)
sync

Single Writer races
P> arguments to spawned routines are
evaluated in the parent context
P but this isn't enough to be race free.

X + spawn foo(x)
y + foo(x)
sync

Single Writer races

P> arguments to spawned routines are
evaluated in the parent context

P but this isn't enough to be race free.

P which value z is passed to the second call
of 'foo’ depends how long the first one
takes.

X + spawn foo(x)
y + foo(x)
sync

Scheduling
Scheduling Problem

Abstractly Mapping threads to processors
Pragmatically Mapping logical threads to a thread pool.

Scheduling
Scheduling Problem

Abstractly Mapping threads to processors
Pragmatically Mapping logical threads to a thread pool.

Ideal Scheduler

On-Line No advance knowledge of when threads will spawn or
complete.

Distributed No central controller.

Scheduling
Scheduling Problem

Abstractly Mapping threads to processors
Pragmatically Mapping logical threads to a thread pool.

Ideal Scheduler

On-Line No advance knowledge of when threads will spawn or
complete.

Distributed No central controller.

P to simplify analysis, we relax the second condition

A greedy centralized scheduler

Maintain a ready queue of strands ready to run.
Scheduling Step

Complete Step If > p (# processors) strands are ready, assign p
strands to processors.

A greedy centralized scheduler

Maintain a ready queue of strands ready to run.
Scheduling Step

Complete Step If > p (# processors) strands are ready, assign p
strands to processors.

Incomplete Step Otherwise, assign all waiting strands to processors

A greedy centralized scheduler

Maintain a ready queue of strands ready to run.
Scheduling Step

Complete Step If > p (# processors) strands are ready, assign p
strands to processors.

Incomplete Step Otherwise, assign all waiting strands to processors

P To simplify analysis, split any non-unit strands into a chain of
unit strands

A greedy centralized scheduler

Maintain a ready queue of strands ready to run.
Scheduling Step

Complete Step If > p (# processors) strands are ready, assign p
strands to processors.

Incomplete Step Otherwise, assign all waiting strands to processors

P To simplify analysis, split any non-unit strands into a chain of
unit strands
P Therefore, after one time step, we schedule again.

Optimal and Approximate Scheduling

Recall

(work law) T,>T/p
(span) T,>T,
Therefore

Tp > HlaX<T1/p, Too) = Opt

Optimal and Approximate Scheduling

Recall

(work law) T,>T/p
(span) T,>T,
Therefore

Tp > maX<T1/p7Too) = Opt

With the greedy algorithm we can achieve

T
T, < ?1 + T, <2max(T,/p,T,.,) =2 x opt

Counting Complete Steps

P Let k be the number of complete steps.

Counting Complete Steps

P Let k be the number of complete steps.
P At each complete step we do p units of work.

Counting Complete Steps

P Let k be the number of complete steps.

P At each complete step we do p units of work.

P Every unit of work corresponds to one step of the serialization,
so kp <Tj.

Counting Complete Steps

P Let k be the number of complete steps.
P At each complete step we do p units of work.

P Every unit of work corresponds to one step of the serialization,
so kp <Tj.

P Therefore k < T} /p

Counting Incomplete Steps
= A

\
"R ﬁ? P Let G be the DAG of remaining strands.

Y

Counting Incomplete Steps
= A

\
"R ﬁ? P Let G be the DAG of remaining strands.

P ready queue = the set of sources in G

Y

Counting Incomplete Steps

A

et e the of remaining strands.
ﬁ?»LthDAGf g strand
= the set of sources in G

v } In incomplete step runs all sources in G

Counting Incomplete Steps

/}‘\\

"R ﬁ? P Let G be the DAG of remaining strands.
> = the set of sources in G
VO P Inincomplete step runs all sources in G
P Every longest path starts at a source

Counting Incomplete Steps

ﬁ? } Let G be the DAG of remaining strands.
/ = the set of sources in G
v } In incomplete step runs all sources in G
P Every longest path starts at a source

P After an incomplete step, length of longest path shrinks by 1

Counting Incomplete Steps

ﬁ? } Let G be the DAG of remaining strands.
/ = the set of sources in GG
v } In incomplete step runs all sources in G
P Every longest path starts at a source

P After an incomplete step, length of longest path shrinks by 1
P There can be at most 7. steps.

Parallel Slackness

parallelism T,

parallel slackness = —
p pT

P If slackness < 1, speedup < p

Parallel Slackness

arallelism T
parallel slackness = P bm _
p pT
T T
speedup = — < —- = p x slackness
T, Ty

P If slackness < 1, speedup < p

P If slackness > 1, linear speedup achievable for
given number of processors

Slackness and Scheduling

1)
px T

slackness :=

Theorem

For suf. large slackness,
greedy scheduler
approaches time Ty /p.

Slackness and Scheduling

1)

slackness :=
px T

Theorem

For suf. large slackness,
greedy scheduler
approaches time Ty /p.

Suppose

Tl/(pXToo) 2> c

Slackness and Scheduling

Ty 1 r <l
slackness := P X T (1) <=0

Theorem

For suf. large slackness,
greedy scheduler
approaches time Ty /p.

Suppose

Tl/(pXToo) 2> c

Slackness and Scheduling

T
slackness := 1
px T

Theorem

For suf. large slackness,
greedy scheduler
approaches time Ty /p.

Suppose

T1/<p><Too) > c

T
(1) T,<=
cp

With the greedy scheduler,

Slackness and Scheduling

T T
lackness 1= — 1 1) To<—
slackness P X T cp
With the greedy scheduler,
Theorem T
For suf. large slackness, T, < <_1 + Too)
p
greedy scheduler
approaches time Ty /p. Substituting (1),
Suppose T 1
PP Tp < 11 (1 n _>
D c

T1/<p><Too) > c

	Dynamic Multithreaded Algorithms
	Race Conditions
	Scheduling

