CS3383 Unit 3.2: Dynamic Programming
Examples

David Bremner

March 10, 2024

Dynamic Programming
Balloon Flight Planning
Longest Increasing Subsequence
Edit Distance

Balloon Flight Planning

»

P Start at (0,0)

P every step, rise or fall up to k steps, and (X :
increase x by 1. o

P> one prize per integer x > 0.

P discretize the problem as a graph search

Big Graph is Big

X
A\
X

P computed graph is (kn) @\ ,
P input coordinates O(nlogn + nlogk). VN

P bad dependence on k; more later

Finding a maximum value path

An easy case of a hard problem
In general NP-Hard, but not in DAGs.

function BESTPATH(V, E)
for v € TopSort(V') do
Score[v] = —oo // unreachable
for (u,v) € E'do // incoming edges
Score[v] = max(Score[v],
Value[v]+Score[u])
end for
end for
end function

Straightening paths

Lemma (Straightening Paths)

If there is a feasible path from p to q then the
segment [p, q] is feasible.

Proof

The path cannot
escape the cone
define by the
steepest possible
segments.

A new graph

Improved graph size

The new graph is O(p?),
where p < n is the
number of prizes.

Longest increasing subsequence problem

Input Integers aq,a, ... a,
Output N/’
D 2 8 b 7

_M/'
Qs Qs ee —
» (a;,a;) € Eifi<jand
Such that a; < aj_

. . . » DPV 6.2, JE3.6
(21 < 1o - < Zk

and

ail < aiZ < o < a/ik

Defining subproblems

P Define F'(i) as the length of longest

sequence starting at position ¢ m/’
5. 2 _8 6 7

» We could do n longest path in ~ " v° e
DAG queries.

P Thinking recursively:
F(i) =1+ max{F(j) | (i,)) € E}

P Topological sort is
trivial

» We could solve this reasonably fast
e.g. by memoization.

Longest path in DAG, working backwards

P Define L[i] as the longest path @/’
ending at a, 5 2 8 6 7

S~ v ¥

For i = 1.n:
L{i] = 1 + max { L) | (j,i) in E }

P total cost is O(|E|), after
computing E.

Improving memory use

P We can inline the definition of E.
» L(i) =1+ max{L(j) | j<iand a; <a;}

def 1lis(A):

n = len(A)
L = [1] * n
for i in range(n):

for j in range(i):

if A[j] < A[i]:
L[i] = max(L[i],L[jl+1)

return max (L)

Edit (Levenshtein) Distance

» DPV 6.3, JE3.7

P Minimum number of insertions, deletions, substitutions to
transform one string into another.

Example: timberlake — fruitcake

P non optimal solution
iiii d d d
I B E

d d
M R

Q- w

_ _ _ _T AKE
FRUIT AKE

Total cost 10.

Alignments (gap representation)

P top line has letters from A, in order, or _
P bottom line has has letters from B or _
P cost per column is 0 or 1.

Theorem (Optimal substructure)

Removing any column from an optimal alignment, yields an
opt. alignment for the remaining substrings.

Subproblems (prefixes)
P Define EJi, j] as the minimum edit cost for A[l ...] and

BJ[1...7]
Eli,j—1]+1 insertion
Eli, j Eli—1,5]+1 deletion
7'7 — . . -
J Eli—1,j—1]+ 1 substition
Eli—1,j—1] equality

justification.

We know deleting a column removes an element
from one or both strings; all edit operations
cost 1.

]

order of subproblems

Eli—1,5]+1 deletion

Eli, j] = Eli,j—1]+1 insertion
’ Eli—1,7—1]+1 substition

Eli—1,j—1] equality

P dependency of subproblems is exactly the same
as LCS, so essentially the same DP algorithm
works.

P or just memoize the recursion
P what are the base cases?

	Dynamic Programming
	Balloon Flight Planning
	Longest Increasing Subsequence
	Edit Distance

