
CS3383 Unit 3: Dynamic Programming

David Bremner

February 24, 2024



Dynamic Programming
Shortest path in DAG



Background

Dynamic programming DPV 6, CLRS 15
Topological Sort CLRS 22.4, DPV 3.3
Shortest path in DAG DPV 6.1



November Break Hotels

Wanted Cheap holiday
Costs Hotel + Taxi, no charge for inconvenience

Taxi Cost
a b c aprt

a 0 10 30 50
b 10 0 30 50
c 30 30 0 50

aprt 50 50 50 0

Hotel Price
1 2 3 4

a 100 100 100 100
b 80 40 120 120
c 50 80 80 80



It’s a trap!

Hotel Price
1 2 3 4

a 100 100 100 100
b 80 40 120 120
c 50 80 80 80

Taxi Cost
a b c airport

a 0 10 30 50
b 10 0 30 50
c 1000 1000 0 500

airport 50 50 50 0



Let’s get graphical

Day 1 Day 2 Day 3 Day 4

a

a100

b

50

c
130

b

110

80

100

c

1100

1080

80

a

b

c a

airportb

c

500

airport 150

130

80



Djikstra considered overkill

▶ We have a DAG with non-negative edge weights
▶ So we find a shortest path in linear time after

topological sorting.
▶ We can do topological sort by DFS or by

(essentially) BFS.



Topological Sort

Input DAG 𝐺 = (𝐸, 𝑉 )
Output rank[v] s.t.

(𝑢, 𝑣) ∈ 𝐸 ⇒
rank[𝑢] < rank[𝑣]

rank 0

rank 1

1

0

2

3

rank 2

5rank 3

4

rank 4

rank 5



“Recursive” topological sort

Recursive topological sort
1. Remove a source from the DAG, and put it first.
2. Topologically sort the remaining graph.

▶ how to quickly find a source?
▶ Use some auxilary data structure to track

sources across iterations



Topological sort with counters

a 0

c 1

d 2

g 1

h 4

b 0 e 1

f 1

i 2

j 4

k 2



No priority queue needed

while len(Q) > 0:
v = Q.popleft()
rank[v]=len(output)
output.append(v)
for (u,_) in G[v]:

count[u] -= 1
if count[u] == 0:

Q.append(u)



Shortest Paths in DAGs

▶ Every path in a DAG goes through nodes in
linearized (topological sort) order.

▶ every node is reached via its predecessors
▶ So we need a single loop after sorting.

for j in range(rank[root]+1,n):
v = order[j]
for (prev ,w) in In[v]:

if w+dist[prev] < dist[v]:
dist[v]=w+dist[prev]



So what does this have to do with Dynamic
Programming?

Ordered Subproblems
In order to solve our problem in a single pass, we need

▶ An ordered set of subproblems 𝐿(𝑖)
▶ Each subproblem 𝐿(𝑖) can be solved using only

the answers for 𝐿(𝑗), for 𝑗 < 𝑖.


	Dynamic Programming
	Shortest path in DAG


