(CS3383 Unit 2.4: Union Find Path

Compression

David Bremner

February 26, 2024

QOutline

Union Find
Path Compression
Path Compression Analysis

“Memoizing” the find routine

def find (P, key):

while P.parent[key] != key:

key = P.parent [key]
return key

def find (P, key):
if P.parent[key] != key:
P.parent [key] = \
P.find (P.parent [key])
return P.parent [key]

“Memoizing” the find routine

def find (P, key):
if P.parent[key] != key:
P.parent [key] = \
P.find (P.parent [key])
return P.parent [key]

bhefore "a"E'N‘E'

“Memoizing” the find routine

def find (P, key):
if P.parent[key] != key:
P.parent [key] = \
P.find (P.parent [key])
return P.parent [key]

bhefore "a"E'H‘E'

After find(8)

Find example

Find example

3

o SIOIINE.
9 &

DION6

DO srerma

OO®

find(8), find(10)

find(8), find(10)

Rank ordering is maintained

Property 1

For any x such that parent(z) # z,
rank(z) < rank(parent(z))

Rank ordering is maintained

Property 1

For any x such that parent(z) # z,
rank(z) < rank(parent(z))

Shortcuts preserve order

parent(parent(x))
Z

parent(x)

=

Size of trees is preserved, but not subtrees.

Property 2’ E
Any root node of rank k has at least 2¥ nodes in its 6 3 e
subtree.

Size of trees is preserved, but not subtrees.

Property 2’ E
Any root node of rank k has at least 2¥ nodes in its 6 3 e
subtree.

Proof of property 2.

Induction: Base case is k = 0. Roots of rank k are
made from two rank k — 1 roots. (]

Union+Find Example 1/

P initial partition

Union+Find Example 1/

P initial part|t|on

> after union(O 3), union(1,4)

Union+Find Example 2/

after union(4,0)

after union(0,3), union(1,4) 0 G

Union+Find Example 3/

after union(4,0)

after union(4,0), find(1
e union(2 5

00 :

Union+Find Example 4/

after union(5,0)

after union(4,0), find(1),
union(2,5) e

oJNe
soor VPT

Union+Find Example 5/

after union(5,0)

a after union(5, 0) find(2

Not too many nodes of rank £

Property 3

If there are n elements, there are at most |n/2% | nodes of rank k.

Not too many nodes of rank k
Property 3
If there are n elements, there are at most |n/2% | nodes of rank k.

P From property 1, descendents of a given rank k
node are distinct.

Not too many nodes of rank k

Property 3

If there are n elements, there are at most |n/2% | nodes of rank k.

P From property 1, descendents of a given rank k
node are distinct.

» When a node gets rank k£ > 0, it is a root, and
has 2% descendents.

Not too many nodes of rank k

Property 3

If there are n elements, there are at most |n/2% | nodes of rank k.

P From property 1, descendents of a given rank k
node are distinct.

» When a node gets rank k£ > 0, it is a root, and
has 2% descendents.

P Those descendents are never used to make
another node rank k. (non-roots stay
non-roots).

Rank intervals
» We divide the numbers [1,n] into [k + 1, 2%]

[1,1],12,2],[3,4], [5,16], ..., [k + 1,2%]

Rank intervals
» We divide the numbers [1,n] into [k + 1, 2%]

[1,1],[2,2],[3,4],[5,16], ..., [k + 1,2%]
P The first p intervals cover

22”'2}p — 1 times

2

Rank intervals
» We divide the numbers [1,n] into [k + 1, 2%]

[1,1],[2,2],[3,4],[5,16], ..., [k + 1,2%]
P The first p intervals cover

22”'2}p — 1 times

2

P log*(n) + 1 intervals cover n

log*(n) 1 if log(n) <1
og*(n) =
& 1 + log"(log(n)) otherwise

Bounding disbursements 1/2

» Each node in an interval ending in 2% gets 2 dollars.

Bounding disbursements 1/2

» Each node in an interval ending in 2% gets 2 dollars.
P By property 3, the total number of nodes in such an interval is

at most
n n n n

2k+1 + Qk+2 + 2k+3 + . 22k

Bounding disbursements 1/2
» Each node in an interval ending in 2% gets 2 dollars.
P By property 3, the total number of nodes in such an interval is

at most
n n n n

2k+1 + Qk+2 + 2k+3 + . 22k
» We need to bound

2k
2.2

i=k+1

Bounding disbursements 1/2

» Each node in an interval ending in 2% gets 2 dollars.
P By property 3, the total number of nodes in such an interval is

at most
n n n n
2k+1 + Qk+2 + 2k+3 . 22k
P We need to bound
2k 2k _fk—1

Bounding disbursements 1/2

» Each node in an interval ending in 2% gets 2 dollars.
P By property 3, the total number of nodes in such an interval is

at most
n n n n
2k+1 + Qk+2 + 2k+3 + . 22k
» We need to bound
2k 1 2k _k—1
Y2 =gy D 2
i=k+1 1=0

Bounding disbursements 2/2
» We need to bound

ok 1 2k _f—1
D 2=y D 2
1=k+1 1=0
<2 (3)
= 9k+1 o
Qf+ = 2

P each interval get at most n dollars in total
» n(log" n+ 1) dollars over all intervals.

Bounding disbursements 2/2
» We need to bound

ok 1 2k _f—1
D 2=y D 2
1=k+1 1=0
= 9k+1 o
Qf+ = 2
1 1
— G.S.
2k+11 — 1/2

P each interval get at most n dollars in total
» n(log" n+ 1) dollars over all intervals.

Paying for find operations 1/2

def find (P, key):
if P.parent[key] != key:
P.parent [key] = \
P.find (P.parent [key])
return P.parent [key]

P Either rank(parent [key]) is in a later interval
than rankkey] or not.

P every
call does
an
update

» work
O(#update

Paying for find operations 1/2

def find (P, key):
if P.parent[key] != key:
P.parent [key] = \
P.find (P.parent [key])
return P.parent [key]

P Either rank(parent [key]) is in a later interval
than rankkey] or not.

P Increasing intervals can happen at most log* n
times.

P every
call does
an
update

» work
O(#update

Paying for find operations 1/2

def find (P, key):

if P.parent[key] != key:
P.parent [key] = \
P.find (P.parent [key]) P every
return P.parent [key] call does
an
P Either rank(parent [key]) is in a later interval update
than rankkey] or not. » work
P Increasing intervals can happen at most log* n O(#update

times.

P If in the same interval, we say key pays a dollar
back.

Paying for find operations 2/2

If rank(parent [key]) is in the interval as rank(key), we say key
pays a dollar back.

parent(parent(x))
No node goes broke -
parent(x)
P Each time z pays a dollar, it increases the rank

of its parent.

Paying for find operations 2/2

If rank(parent [key]) is in the interval as rank(key), we say key
pays a dollar back.

parent(parent(x))
No node goes broke -
parent(x)
P Each time z pays a dollar, it increases the rank

of its parent.

» If rank(x) € [k + 1...2%], that can repeat less
than 2¥ times before its parent is in a higher
interval.

Paying for find operations 2/2

If rank(parent [key]) is in the interval as rank(key), we say key
pays a dollar back.

parent(parent(x))
No node goes broke -
parent(x)
P Each time z pays a dollar, it increases the rank

of its parent.

» If rank(x) € [k + 1...2%], that can repeat less
than 2¥ times before its parent is in a higher
interval.

P Once that happens, payments stop.

Summing up

P We can think about the analysis as classifying all of the
updates to a given key as “near” or “far”, and bounding those
in two different ways.

P Total cost for n operations

P < nlog" n total steps where parent is in next interval
P < nlog" n total steps where parent is in same interval

P Amortized cost in O(log™ n) per operation.

	Union Find
	Path Compression
	Path Compression Analysis

