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key = P.parent [key]
return key
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Rank ordering is maintained

Property 1
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Shortcuts preserve order

parent(parent(x))
Z

parent(x)
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Size of trees is preserved, but not subtrees.
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Size of trees is preserved, but not subtrees.

Property 2’ E
Any root node of rank k has at least 2¥ nodes in its 6 3 e
subtree.

Proof of property 2.

Induction: Base case is k = 0. Roots of rank k are
made from two rank k — 1 roots. (]
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Not too many nodes of rank k

Property 3

If there are n elements, there are at most |n/2% | nodes of rank k.

P From property 1, descendents of a given rank k
node are distinct.

» When a node gets rank k£ > 0, it is a root, and
has 2% descendents.

P Those descendents are never used to make
another node rank k. (non-roots stay
non-roots).
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Rank intervals
» We divide the numbers [1,n] into [k + 1, 2%]

[1,1],[2,2],[3,4],[5,16], ..., [k + 1,2%]
P The first p intervals cover

22”'2}p — 1 times

2

P log*(n) + 1 intervals cover n

log*(n) 1 if log(n) <1
og*(n) =
& 1 + log"(log(n)) otherwise
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Bounding disbursements 2/2
» We need to bound

ok 1 2k _f—1
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<2 (3)
= 9k+1 o
Qf+ = 2
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Bounding disbursements 2/2
» We need to bound

ok 1 2k _f—1
D 2=y D 2
1=k+1 1=0
= 9k+1 o
Qf+ = 2
1 1
— G.S.
2k+11 — 1/2

P each interval get at most n dollars in total
» n(log" n+ 1) dollars over all intervals.
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Paying for find operations 1/2

def find (P, key):

if P.parent[key] != key:
P.parent [key] = \
P.find (P.parent [key]) P every
return P.parent [key] call does
an
P Either rank(parent [key]) is in a later interval update
than rankkey] or not. » work
P Increasing intervals can happen at most log* n O(#update

times.

P If in the same interval, we say key pays a dollar
back.
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Paying for find operations 2/2

If rank(parent [key]) is in the interval as rank(key), we say key
pays a dollar back.

parent(parent(x))
No node goes broke -
parent(x)
P Each time z pays a dollar, it increases the rank

of its parent.

» If rank(x) € [k + 1...2%], that can repeat less
than 2¥ times before its parent is in a higher
interval.

P Once that happens, payments stop.



Summing up

P We can think about the analysis as classifying all of the
updates to a given key as “near” or “far”, and bounding those
in two different ways.

P Total cost for n operations

P < nlog" n total steps where parent is in next interval
P < nlog" n total steps where parent is in same interval

P Amortized cost in O(log™ n) per operation.
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