
CS3383 Unit 2 Lecture 3: Union Find /
Disjoint Set

David Bremner

March 17, 2024

Outline

Union Find
Motivation: MST
Forest representation for disjoint sets
Bounding the height of trees

Union Find
Motivation: MST
Forest representation for disjoint sets
Bounding the height of trees

Kruskal’s MST algorithm

def kruskal(n,E):
P=Partition(n); X=[]
E.sort()
for (weight ,u,v) in E:

if P.find(u) != P.find(v):
X.append((u,v))
P.union(u,v)

return X

▶ How does crossing property apply? What is 𝑆?

Kruskal example

A

B

C

D

E

F

1

4

2 5
4

A

B

C

D

E

F

4

1

4

3 4
2 5

6

4

A

C B

D F

E

Union Find
Motivation: MST
Forest representation for disjoint sets
Bounding the height of trees

Init and Find

def __init__(P,n):
sometimes called makeset(j)
P.parent = [j for j in range(n)]
P.rank = [0] * n

def find(P, key):
while P.parent[key] != key:

key = P.parent[key]
return key

key
0

A
1

B
0

C
2

D
1

Union operation

def union(P,x,y):
rx = P.find(x)
ry = P.find(y)
if rx != ry:

if P.rank[rx] > P.rank[ry]:
P.parent[ry] = rx

else:
P.parent[rx] = ry
if P.rank[rx] == P.rank[ry]:

P.rank[ry] += 1

ry
1

rx
2

1
1

2
0

3
0

Case 1 of main if

Union Find Example 1/3

▶ initial partition
0
0

1
0

2
0

3
0

4
0

5
0

6
0

▶ after union(0,3), union(1,4), union(2,5)

0
0

3
1

1
0

4
1

2
0

5
1

6
0

Union Find Example 1/3

▶ initial partition
0
0

1
0

2
0

3
0

4
0

5
0

6
0

▶ after union(0,3), union(1,4), union(2,5)

0
0

3
1

1
0

4
1

2
0

5
1

6
0

Union Find Example 2/3

after union(0,3), union(1,4),
union(2,5)

0
0

3
1

1
0

4
1

2
0

5
1

6
0

after union(2,6), union(4,0)

0
0

3
2

1
0

4
1

2
0

6
0

5
1

Union Find Example 3/3

after union(2,6), union(4,0)

0
0

3
2

1
0

4
1

2
0

6
0

5
1

after union(1,6)

0
0

3
2

1
0

4
1

2
0

6
0

5
1

Union Find
Motivation: MST
Forest representation for disjoint sets
Bounding the height of trees

Properties of Union Find trees
Property 1
For any 𝑥 such that parent(𝑥) ≠ 𝑥,
rank(𝑥) < rank(parent(𝑥))

Property 2
Any node of rank 𝑘 has at least 2𝑘 nodes in its
subtree.

Property 3
If there are 𝑛 elements, there are at most ⌊𝑛/2𝑘⌋
nodes of rank 𝑘.

Conclusion
∴ Trees are
height at most
log2 𝑛

Properties of Union Find trees
Property 1
For any 𝑥 such that parent(𝑥) ≠ 𝑥,
rank(𝑥) < rank(parent(𝑥))

Property 2
Any node of rank 𝑘 has at least 2𝑘 nodes in its
subtree.

Property 3
If there are 𝑛 elements, there are at most ⌊𝑛/2𝑘⌋
nodes of rank 𝑘.

Conclusion
∴ Trees are
height at most
log2 𝑛

Properties of Union Find trees
Property 1
For any 𝑥 such that parent(𝑥) ≠ 𝑥,
rank(𝑥) < rank(parent(𝑥))

Property 2
Any node of rank 𝑘 has at least 2𝑘 nodes in its
subtree.

Property 3
If there are 𝑛 elements, there are at most ⌊𝑛/2𝑘⌋
nodes of rank 𝑘.

Conclusion
∴ Trees are
height at most
log2 𝑛

Properties of Union Find trees
Property 1
For any 𝑥 such that parent(𝑥) ≠ 𝑥,
rank(𝑥) < rank(parent(𝑥))

Property 2
Any node of rank 𝑘 has at least 2𝑘 nodes in its
subtree.

Property 3
If there are 𝑛 elements, there are at most ⌊𝑛/2𝑘⌋
nodes of rank 𝑘.

Conclusion
∴ Trees are
height at most
log2 𝑛

Proof of Property 1
Property 1
For any 𝑥 such that parent(𝑥) ≠ 𝑥,
rank(𝑥) < rank(parent(𝑥))

induction
if P.rank[rx] > P.rank[ry]:

P.parent[ry] = rx
else:

P.parent[rx] = ry
if P.rank[rx] == P.rank[ry]:

P.rank[ry] += 1

Base Case
Initially every
node has
parent(𝑥) = 𝑥.

Proof of Property 1
Property 1
For any 𝑥 such that parent(𝑥) ≠ 𝑥,
rank(𝑥) < rank(parent(𝑥))

induction
if P.rank[rx] > P.rank[ry]:

P.parent[ry] = rx
else:

P.parent[rx] = ry
if P.rank[rx] == P.rank[ry]:

P.rank[ry] += 1

Base Case
Initially every
node has
parent(𝑥) = 𝑥.

Proof of Property 1
Property 1
For any 𝑥 such that parent(𝑥) ≠ 𝑥,
rank(𝑥) < rank(parent(𝑥))

induction
if P.rank[rx] > P.rank[ry]:

P.parent[ry] = rx
else:

P.parent[rx] = ry
if P.rank[rx] == P.rank[ry]:

P.rank[ry] += 1

Base Case
Initially every
node has
parent(𝑥) = 𝑥.

Proof of Property 2
Property 2
Any node of rank 𝑘 has at least 2𝑘 nodes in its subtree.

Induction
▶ Rank 𝑘 + 1 is created only when joining two

trees of rank 𝑘.

if P.rank[rx] == P.rank[ry]:
P.rank[ry] += 1

▶ by induction, each of these subtrees has at
least 2𝑘 nodes

base case
true for 𝑘 = 0.

Proof of Property 2
Property 2
Any node of rank 𝑘 has at least 2𝑘 nodes in its subtree.

Induction
▶ Rank 𝑘 + 1 is created only when joining two

trees of rank 𝑘.

if P.rank[rx] == P.rank[ry]:
P.rank[ry] += 1

▶ by induction, each of these subtrees has at
least 2𝑘 nodes

base case
true for 𝑘 = 0.

Proof of Property 2
Property 2
Any node of rank 𝑘 has at least 2𝑘 nodes in its subtree.

Induction
▶ Rank 𝑘 + 1 is created only when joining two

trees of rank 𝑘.

if P.rank[rx] == P.rank[ry]:
P.rank[ry] += 1

▶ by induction, each of these subtrees has at
least 2𝑘 nodes

base case
true for 𝑘 = 0.

Proof of property 3

Property 3
If there are 𝑛 elements, are at most ⌊𝑛/2𝑘⌋ nodes of rank 𝑘.

Proof
▶ By Property 1 any element has at most one

ancestor of rank 𝑘.
▶ Therefore the children of two rank 𝑘 nodes are

distinct.
▶ Apply property 2.

Proof of property 3

Property 3
If there are 𝑛 elements, are at most ⌊𝑛/2𝑘⌋ nodes of rank 𝑘.

Proof
▶ By Property 1 any element has at most one

ancestor of rank 𝑘.
▶ Therefore the children of two rank 𝑘 nodes are

distinct.
▶ Apply property 2.

	Union Find
	Motivation: MST
	Forest representation for disjoint sets
	Bounding the height of trees

