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Kruskal’s MST algorithm

def kruskal(n,E):
P=Partition(n); X=[]
E.sort()
for (weight ,u,v) in E:

if P.find(u) != P.find(v):
X.append((u,v))
P.union(u,v)

return X

▶ How does crossing property apply? What is 𝑆?



Kruskal example
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Init and Find

def __init__(P,n):
# sometimes called makeset(j)
P.parent = [j for j in range(n)]
P.rank = [0] * n

def find(P, key):
while P.parent[key] != key:

key = P.parent[key]
return key
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Union operation

def union(P,x,y):
rx = P.find(x)
ry = P.find(y)
if rx != ry:

if P.rank[rx] > P.rank[ry]:
P.parent[ry] = rx

else:
P.parent[rx] = ry
if P.rank[rx] == P.rank[ry]:

P.rank[ry] += 1
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after union(0,3), union(1,4),
union(2,5)
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Union Find Example 3/3

after union(2,6), union(4,0)
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Properties of Union Find trees
Property 1
For any 𝑥 such that parent(𝑥) ≠ 𝑥,
rank(𝑥) < rank(parent(𝑥))

Property 2
Any node of rank 𝑘 has at least 2𝑘 nodes in its
subtree.

Property 3
If there are 𝑛 elements, there are at most ⌊𝑛/2𝑘⌋
nodes of rank 𝑘.

Conclusion
∴ Trees are
height at most
log2 𝑛
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Proof of Property 1
Property 1
For any 𝑥 such that parent(𝑥) ≠ 𝑥,
rank(𝑥) < rank(parent(𝑥))

induction
if P.rank[rx] > P.rank[ry]:

P.parent[ry] = rx
else:

P.parent[rx] = ry
if P.rank[rx] == P.rank[ry]:

P.rank[ry] += 1

Base Case
Initially every
node has
parent(𝑥) = 𝑥.
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Proof of Property 2
Property 2
Any node of rank 𝑘 has at least 2𝑘 nodes in its subtree.

Induction
▶ Rank 𝑘 + 1 is created only when joining two

trees of rank 𝑘.

if P.rank[rx] == P.rank[ry]:
P.rank[ry] += 1

▶ by induction, each of these subtrees has at
least 2𝑘 nodes

base case
true for 𝑘 = 0.
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Proof of property 3

Property 3
If there are 𝑛 elements, are at most ⌊𝑛/2𝑘⌋ nodes of rank 𝑘.

Proof
▶ By Property 1 any element has at most one

ancestor of rank 𝑘.
▶ Therefore the children of two rank 𝑘 nodes are

distinct.
▶ Apply property 2.
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