QOutline

Greedy
MST

Cut Property

Lemma

Let T' be a minimum spanning tree, X C T s.t. X does not connect

(S,V —S). Let e be the lightest edge from S toV —S. X Ue is
part of some MST.

Prim's Algorithm

def prim(G,root):
pq = pqdict(); prev = {}
for v in G.keys():
pq.additem(v,inf)
pq.updateitem (root ,0)
while len(pq)>0:
v = pq.pop()
for (z,weight) in G[v]:

if z in pq and weight < pqlz]:

prev[z]=v
pq.updateitem(z,weight)
return prev

Cut Property and Prims Algorithm

Cut Property and Prims Algorithm

S:=V —pq
X :={(u,v) € S xS |v=prev]ul}.

Loop Invariant / Inductive Hypothesis

1. X is a subset of some MST

2. For z non-root, pq[z] is weight of the cheapest crossing edge
ending at z.

Cut Property and Prim’s Algorithm
def prim(G,root):

while len(pq)>0:
S« SU{v}, X « XU{(prev[y],v)}
v = pq.pop()
for (z,weight) in G[v]:
if z in pq and weight < pqlz]:
found a cheaper crossing edge to =z
prev[z]=v

pq.updateitem(z,weight)
return prev

Prim’s induction
L.I. (1) X € MST. (2) pq[z] = cheapest ce to z.

Base Case
X=0

Prim’'s induction

L.I. (1) X € MST. (2) pq[z] = cheapest ce to z.

Induction
Suppose after k£ > 0 iterations, L.I. holds. Iteration k£ + 1:

Prim’'s induction

L.I. (1) X € MST. (2) pq[z] = cheapest ce to z.

Induction

Suppose after k£ > 0 iterations, L.I. holds. Iteration k£ + 1:
LIT From L.I.2, we add the cheapest x-ing edge
e = (prev[v],v) to X. By C.P. X U {e} is
part of MST

Prim’'s induction

L.I. (1) X € MST. (2) pq[z] = cheapest ce to z.

Induction
Suppose after k£ > 0 iterations, L.I. holds. Iteration k£ + 1:

LIT From L.I.2, we add the cheapest x-ing edge
e = (prev[v],v) to X. By C.P. X U {e} is
part of MST

LI2 Only crossing edges starting at v are new
in this iteration, and those are updated
correctly.

	Greedy
	MST

