
CS3383 Lecture 1.4: Order Statistics

David Bremner

January 28, 2024

Outline

Even More Divide and Conquer
Randomized median finding
Median of medians

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.2

Order statistics
Select the ith smallest of n elements (the
element with rank i).
• i = 1: minimum;
• i = n: maximum;
• i = ⎣(n+1)/2⎦ or ⎡(n+1)/2⎤: median.

Naive algorithm: Sort and index ith element.
Worst-case running time = Θ(n lg n) + Θ(1)

= Θ(n lg n),
using merge sort or heapsort (not quicksort).

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.3

Randomized divide-and-
conquer algorithm

RAND-SELECT(A, p, q, i) ⊳ ith smallest of A[p . . q]
if p = q then return A[p]
r ← RAND-PARTITION(A, p, q)
k ← r – p + 1 ⊳ k = rank(A[r])
if i = k then return A[r]
if i < k

then return RAND-SELECT(A, p, r – 1, i)
else return RAND-SELECT(A, r + 1, q, i – k)

≤ A[r]≤ A[r] ≥ A[r]≥ A[r]
rp q

k

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.4

Example

Select the i = 7th smallest:

i = 7
pivot

66 1010 1313 55 88 33 22 1111

k = 4

Select the 7 – 4 = 3rd smallest recursively.

22 55 33 66 88 1313 1010 1111
Partition:

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.5

Intuition for analysis
(All our analyses today assume that all elements
are distinct.)
Lucky:

101log 9/10 == nn
CASE 3

T(n) = T(9n/10) + Θ(n)
= Θ(n)

Unlucky:
T(n) = T(n – 1) + Θ(n)

= Θ(n2)
arithmetic series

Worse than sorting!

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.2

Order statistics
Select the ith smallest of n elements (the
element with rank i).
• i = 1: minimum;
• i = n: maximum;
• i = ⎣(n+1)/2⎦ or ⎡(n+1)/2⎤: median.

Naive algorithm: Sort and index ith element.
Worst-case running time = Θ(n lg n) + Θ(1)

= Θ(n lg n),
using merge sort or heapsort (not quicksort).

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.3

Randomized divide-and-
conquer algorithm

RAND-SELECT(A, p, q, i) ⊳ ith smallest of A[p . . q]
if p = q then return A[p]
r ← RAND-PARTITION(A, p, q)
k ← r – p + 1 ⊳ k = rank(A[r])
if i = k then return A[r]
if i < k

then return RAND-SELECT(A, p, r – 1, i)
else return RAND-SELECT(A, r + 1, q, i – k)

≤ A[r]≤ A[r] ≥ A[r]≥ A[r]
rp q

k

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.4

Example

Select the i = 7th smallest:

i = 7
pivot

66 1010 1313 55 88 33 22 1111

k = 4

Select the 7 – 4 = 3rd smallest recursively.

22 55 33 66 88 1313 1010 1111
Partition:

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.5

Intuition for analysis
(All our analyses today assume that all elements
are distinct.)
Lucky:

101log 9/10 == nn
CASE 3

T(n) = T(9n/10) + Θ(n)
= Θ(n)

Unlucky:
T(n) = T(n – 1) + Θ(n)

= Θ(n2)
arithmetic series

Worse than sorting!

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.2

Order statistics
Select the ith smallest of n elements (the
element with rank i).
• i = 1: minimum;
• i = n: maximum;
• i = ⎣(n+1)/2⎦ or ⎡(n+1)/2⎤: median.

Naive algorithm: Sort and index ith element.
Worst-case running time = Θ(n lg n) + Θ(1)

= Θ(n lg n),
using merge sort or heapsort (not quicksort).

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.3

Randomized divide-and-
conquer algorithm

RAND-SELECT(A, p, q, i) ⊳ ith smallest of A[p . . q]
if p = q then return A[p]
r ← RAND-PARTITION(A, p, q)
k ← r – p + 1 ⊳ k = rank(A[r])
if i = k then return A[r]
if i < k

then return RAND-SELECT(A, p, r – 1, i)
else return RAND-SELECT(A, r + 1, q, i – k)

≤ A[r]≤ A[r] ≥ A[r]≥ A[r]
rp q

k

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.4

Example

Select the i = 7th smallest:

i = 7
pivot

66 1010 1313 55 88 33 22 1111

k = 4

Select the 7 – 4 = 3rd smallest recursively.

22 55 33 66 88 1313 1010 1111
Partition:

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.5

Intuition for analysis
(All our analyses today assume that all elements
are distinct.)
Lucky:

101log 9/10 == nn
CASE 3

T(n) = T(9n/10) + Θ(n)
= Θ(n)

Unlucky:
T(n) = T(n – 1) + Θ(n)

= Θ(n2)
arithmetic series

Worse than sorting!

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.2

Order statistics
Select the ith smallest of n elements (the
element with rank i).
• i = 1: minimum;
• i = n: maximum;
• i = ⎣(n+1)/2⎦ or ⎡(n+1)/2⎤: median.

Naive algorithm: Sort and index ith element.
Worst-case running time = Θ(n lg n) + Θ(1)

= Θ(n lg n),
using merge sort or heapsort (not quicksort).

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.3

Randomized divide-and-
conquer algorithm

RAND-SELECT(A, p, q, i) ⊳ ith smallest of A[p . . q]
if p = q then return A[p]
r ← RAND-PARTITION(A, p, q)
k ← r – p + 1 ⊳ k = rank(A[r])
if i = k then return A[r]
if i < k

then return RAND-SELECT(A, p, r – 1, i)
else return RAND-SELECT(A, r + 1, q, i – k)

≤ A[r]≤ A[r] ≥ A[r]≥ A[r]
rp q

k

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.4

Example

Select the i = 7th smallest:

i = 7
pivot

66 1010 1313 55 88 33 22 1111

k = 4

Select the 7 – 4 = 3rd smallest recursively.

22 55 33 66 88 1313 1010 1111
Partition:

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.5

Intuition for analysis
(All our analyses today assume that all elements
are distinct.)
Lucky:

101log 9/10 == nn
CASE 3

T(n) = T(9n/10) + Θ(n)
= Θ(n)

Unlucky:
T(n) = T(n – 1) + Θ(n)

= Θ(n2)
arithmetic series

Worse than sorting!

Randomized median finding
def select(A,p,q,i):

n = q - p + 1; bad = True
if n==1: return A[p]
while bad:

r = partition(A,p,q,randrange(p,q))
k = r - p
if (k == i): return A[r]
bad = (k< n//4) or (k> 3*n//4)

if (i < k):
return select(A,p,r-1,i)

else:
return select(A,r+1,q,i-k-1)

How many times do we partition?
def select(A,p,q,i):

⋮
while bad:

⋮
bad = (k< n//4) or (k> 3*n//4)

if (i < k):
return select(A,p,r-1,i)

else:
return select(A,r+1,q,i-k-1)

▶ Call a pivot 𝑟 good if ⌊𝑛/4⌋ elements are on
either side.

▶ Odds are 50/50.

A random recurrence
▶ Let 𝑊(𝑛) be the random variable for time in while.
▶ Let 𝑠 = 4/3

𝑇 (𝑛) ≤ 𝑊(𝑛) + 𝑇 (𝑛/𝑠) + 𝑂(1)
≤ 𝑊(𝑛) + 𝑊(𝑛/𝑠) + 𝑇 (𝑛/𝑠2) + 𝑂(1) + 𝑂(1)

≤
log𝑠(𝑛)

∑
𝑗=0

[𝑊(𝑛
𝑠𝑗) + 𝑂(1)]

≤ ⎡⎢
⎣

log𝑠(𝑛)

∑
𝑗=0

𝑊 (𝑛
𝑠𝑗)⎤⎥

⎦
+ 𝑐1 log𝑠 𝑛 ∀𝑛 ≥ 𝑛0

A random recurrence
▶ Let 𝑊(𝑛) be the random variable for time in while.
▶ Let 𝑠 = 4/3

𝑇 (𝑛) ≤ 𝑊(𝑛) + 𝑇 (𝑛/𝑠) + 𝑂(1)
≤ 𝑊(𝑛) + 𝑊(𝑛/𝑠) + 𝑇 (𝑛/𝑠2) + 𝑂(1) + 𝑂(1)

≤
log𝑠(𝑛)

∑
𝑗=0

[𝑊(𝑛
𝑠𝑗) + 𝑂(1)]

≤ ⎡⎢
⎣

log𝑠(𝑛)

∑
𝑗=0

𝑊 (𝑛
𝑠𝑗)⎤⎥

⎦
+ 𝑐1 log𝑠 𝑛 ∀𝑛 ≥ 𝑛0

A random recurrence
▶ Let 𝑊(𝑛) be the random variable for time in while.
▶ Let 𝑠 = 4/3

𝑇 (𝑛) ≤ 𝑊(𝑛) + 𝑇 (𝑛/𝑠) + 𝑂(1)
≤ 𝑊(𝑛) + 𝑊(𝑛/𝑠) + 𝑇 (𝑛/𝑠2) + 𝑂(1) + 𝑂(1)

≤
log𝑠(𝑛)

∑
𝑗=0

[𝑊(𝑛
𝑠𝑗) + 𝑂(1)]

≤ ⎡⎢
⎣

log𝑠(𝑛)

∑
𝑗=0

𝑊 (𝑛
𝑠𝑗)⎤⎥

⎦
+ 𝑐1 log𝑠 𝑛 ∀𝑛 ≥ 𝑛0

A random recurrence
▶ Let 𝑊(𝑛) be the random variable for time in while.
▶ Let 𝑠 = 4/3

𝑇 (𝑛) ≤ 𝑊(𝑛) + 𝑇 (𝑛/𝑠) + 𝑂(1)
≤ 𝑊(𝑛) + 𝑊(𝑛/𝑠) + 𝑇 (𝑛/𝑠2) + 𝑂(1) + 𝑂(1)

≤
log𝑠(𝑛)

∑
𝑗=0

[𝑊(𝑛
𝑠𝑗) + 𝑂(1)]

≤ ⎡⎢
⎣

log𝑠(𝑛)

∑
𝑗=0

𝑊 (𝑛
𝑠𝑗)⎤⎥

⎦
+ 𝑐1 log𝑠 𝑛 ∀𝑛 ≥ 𝑛0

Linearity of expectation, again
▶ Let 𝑊(𝑛) be the random variable for time in while.
▶ Let 𝑠 = 4/3

For all 𝑛 ≥ 𝑛0

𝑇 (𝑛) ≤ ⎛⎜
⎝

log𝑠(𝑛)

∑
𝑗=0

𝑊 (𝑛
𝑠𝑗)⎞⎟

⎠
+ 𝑐1 log𝑠 𝑛

𝐸[𝑇 (𝑛)] ≤ 𝐸 ⎡⎢
⎣

log𝑠(𝑛)

∑
𝑗=0

𝑊 (𝑛
𝑠𝑗)⎤⎥

⎦
+ 𝑐1 log𝑠 𝑛

≤
log𝑠(𝑛)

∑
𝑗=0

𝐸 [𝑊 (𝑛
𝑠𝑗)] + 𝑐1 log𝑠 𝑛

Linearity of expectation, again
▶ Let 𝑊(𝑛) be the random variable for time in while.
▶ Let 𝑠 = 4/3

For all 𝑛 ≥ 𝑛0

𝑇 (𝑛) ≤ ⎛⎜
⎝

log𝑠(𝑛)

∑
𝑗=0

𝑊 (𝑛
𝑠𝑗)⎞⎟

⎠
+ 𝑐1 log𝑠 𝑛

𝐸[𝑇 (𝑛)] ≤ 𝐸 ⎡⎢
⎣

log𝑠(𝑛)

∑
𝑗=0

𝑊 (𝑛
𝑠𝑗)⎤⎥

⎦
+ 𝑐1 log𝑠 𝑛

≤
log𝑠(𝑛)

∑
𝑗=0

𝐸 [𝑊 (𝑛
𝑠𝑗)] + 𝑐1 log𝑠 𝑛

Linearity of expectation, again
▶ Let 𝑊(𝑛) be the random variable for time in while.
▶ Let 𝑠 = 4/3

For all 𝑛 ≥ 𝑛0

𝑇 (𝑛) ≤ ⎛⎜
⎝

log𝑠(𝑛)

∑
𝑗=0

𝑊 (𝑛
𝑠𝑗)⎞⎟

⎠
+ 𝑐1 log𝑠 𝑛

𝐸[𝑇 (𝑛)] ≤ 𝐸 ⎡⎢
⎣

log𝑠(𝑛)

∑
𝑗=0

𝑊 (𝑛
𝑠𝑗)⎤⎥

⎦
+ 𝑐1 log𝑠 𝑛

≤
log𝑠(𝑛)

∑
𝑗=0

𝐸 [𝑊 (𝑛
𝑠𝑗)] + 𝑐1 log𝑠 𝑛

How many iterations?

n/8 n/4 n/2 3n/4index

𝑊(𝑛) ≤ 𝑐2𝑛 ⋅
∞

∑
𝑗=1

𝑗𝑋𝑗

where

𝑋𝑗 = {1 while runs 𝑗 times
0 otherwise

How many expected iterations?

n/8 n/4 n/2 3n/4index

𝐸[𝑊(𝑛)] ≤ 𝐸 [𝑐2𝑛 ⋅
∞

∑
𝑗=1

𝑗𝑋𝑗]

≤ 𝑐2𝑛 ⋅
∞

∑
𝑗=1

𝐸[𝑗𝑋𝑗]

≤ 𝑐2𝑛 ⋅
∞

∑
𝑗=1

𝑗𝑃 [𝑋𝑗 = 1]

How many expected iterations?

n/8 n/4 n/2 3n/4index

𝐸[𝑊(𝑛)] ≤ 𝐸 [𝑐2𝑛 ⋅
∞

∑
𝑗=1

𝑗𝑋𝑗]

≤ 𝑐2𝑛 ⋅
∞

∑
𝑗=1

𝐸[𝑗𝑋𝑗]

≤ 𝑐2𝑛 ⋅
∞

∑
𝑗=1

𝑗𝑃 [𝑋𝑗 = 1]

How many expected iterations?

n/8 n/4 n/2 3n/4index

𝐸[𝑊(𝑛)] ≤ 𝐸 [𝑐2𝑛 ⋅
∞

∑
𝑗=1

𝑗𝑋𝑗]

≤ 𝑐2𝑛 ⋅
∞

∑
𝑗=1

𝐸[𝑗𝑋𝑗]

≤ 𝑐2𝑛 ⋅
∞

∑
𝑗=1

𝑗𝑃 [𝑋𝑗 = 1]

Probability of exactly 𝑗 iterations

n/8 n/4 n/2 3n/4index

𝑋𝑗 = {1 while runs 𝑗 times
0 otherwise

𝑃 [𝑋𝑗 = 1] = (1 − 𝑝)𝑗−1 ⋅ 𝑝

= 1
2𝑗

How many expected iterations? (redux)

𝐸[𝑊(𝑛)] ≤ 𝑐2𝑛 ⋅
∞

∑
𝑗=1

𝑗𝑃 [𝑋𝑗 = 1]

≤ 𝑐2𝑛 ⋅
∞

∑
𝑗=1

𝑗
2𝑗

≤ 𝑐2𝑛 ⋅ 1/2
(1 − 1/2)2(CLRS4 A.11)

≤ 𝑐3𝑛

How many expected iterations? (redux)

𝐸[𝑊(𝑛)] ≤ 𝑐2𝑛 ⋅
∞

∑
𝑗=1

𝑗𝑃 [𝑋𝑗 = 1]

≤ 𝑐2𝑛 ⋅
∞

∑
𝑗=1

𝑗
2𝑗

≤ 𝑐2𝑛 ⋅ 1/2
(1 − 1/2)2(CLRS4 A.11)

≤ 𝑐3𝑛

How many expected iterations? (redux)

𝐸[𝑊(𝑛)] ≤ 𝑐2𝑛 ⋅
∞

∑
𝑗=1

𝑗𝑃 [𝑋𝑗 = 1]

≤ 𝑐2𝑛 ⋅
∞

∑
𝑗=1

𝑗
2𝑗

≤ 𝑐2𝑛 ⋅ 1/2
(1 − 1/2)2(CLRS4 A.11)

≤ 𝑐3𝑛

How many expected iterations? (redux)

𝐸[𝑊(𝑛)] ≤ 𝑐2𝑛 ⋅
∞

∑
𝑗=1

𝑗𝑃 [𝑋𝑗 = 1]

≤ 𝑐2𝑛 ⋅
∞

∑
𝑗=1

𝑗
2𝑗

≤ 𝑐2𝑛 ⋅ 1/2
(1 − 1/2)2(CLRS4 A.11)

≤ 𝑐3𝑛

Geometric series, again

Let 𝑊(𝑛) be time in while. Let 𝑠 = 4/3. For all 𝑛 ≥ 𝑛0:

𝐸[𝑇 (𝑛)] ≤
log𝑠(𝑛)

∑
𝑗=0

𝐸 [𝑊 (𝑛
𝑠𝑗)] + 𝑐1 log𝑠 𝑛

≤ ⎛⎜
⎝

log𝑠(𝑛)

∑
𝑗=0

𝑐3
𝑛
𝑠𝑗

⎞⎟
⎠

+ 𝑐1 log𝑠 𝑛

≤ 𝑐3𝑛 ⋅ 1
1 − 𝑠−1 + 𝑐1 log𝑠 𝑛(CLRS4-A.7)

Geometric series, again

Let 𝑊(𝑛) be time in while. Let 𝑠 = 4/3. For all 𝑛 ≥ 𝑛0:

𝐸[𝑇 (𝑛)] ≤
log𝑠(𝑛)

∑
𝑗=0

𝐸 [𝑊 (𝑛
𝑠𝑗)] + 𝑐1 log𝑠 𝑛

≤ ⎛⎜
⎝

log𝑠(𝑛)

∑
𝑗=0

𝑐3
𝑛
𝑠𝑗

⎞⎟
⎠

+ 𝑐1 log𝑠 𝑛

≤ 𝑐3𝑛 ⋅ 1
1 − 𝑠−1 + 𝑐1 log𝑠 𝑛(CLRS4-A.7)

Geometric series, again

Let 𝑊(𝑛) be time in while. Let 𝑠 = 4/3. For all 𝑛 ≥ 𝑛0:

𝐸[𝑇 (𝑛)] ≤
log𝑠(𝑛)

∑
𝑗=0

𝐸 [𝑊 (𝑛
𝑠𝑗)] + 𝑐1 log𝑠 𝑛

≤ ⎛⎜
⎝

log𝑠(𝑛)

∑
𝑗=0

𝑐3
𝑛
𝑠𝑗

⎞⎟
⎠

+ 𝑐1 log𝑠 𝑛

≤ 𝑐3𝑛 ⋅ 1
1 − 𝑠−1 + 𝑐1 log𝑠 𝑛(CLRS4-A.7)

Deterministically choosing a good pivot.

▶ it turns out we can achieve 𝑂(𝑛) time
deterministically

▶ deterministic algorithm is more complicated
▶ practical performance is typically worse
▶ The main idea of this algorithm is taking the

median of medians

Deterministically choosing a good pivot.

▶ it turns out we can achieve 𝑂(𝑛) time
deterministically

▶ deterministic algorithm is more complicated

▶ practical performance is typically worse
▶ The main idea of this algorithm is taking the

median of medians

Deterministically choosing a good pivot.

▶ it turns out we can achieve 𝑂(𝑛) time
deterministically

▶ deterministic algorithm is more complicated
▶ practical performance is typically worse

▶ The main idea of this algorithm is taking the
median of medians

Deterministically choosing a good pivot.

▶ it turns out we can achieve 𝑂(𝑛) time
deterministically

▶ deterministic algorithm is more complicated
▶ practical performance is typically worse
▶ The main idea of this algorithm is taking the

median of medians

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.20

Choosing the pivot

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.21

Choosing the pivot

1. Divide the n elements into groups of 5.

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.22

Choosing the pivot

lesser

greater

1. Divide the n elements into groups of 5. Find
the median of each 5-element group by rote.

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.23

Choosing the pivot

x

lesser

greater

1. Divide the n elements into groups of 5. Find
the median of each 5-element group by rote.

2. Recursively SELECT the median x of the ⎣n/5⎦
group medians to be the pivot.

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.24

Analysis

x

lesser

greater

At least half the group medians are ≤ x, which
is at least ⎣ ⎣n/5⎦ /2⎦ = ⎣n/10⎦ group medians.

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.25

Analysis (Assume all elements are distinct.)

x

lesser

greater

At least half the group medians are ≤ x, which
is at least ⎣ ⎣n/5⎦ /2⎦ = ⎣n/10⎦ group medians.
• Therefore, at least 3 ⎣n/10⎦ elements are ≤ x.

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.26

Analysis (Assume all elements are distinct.)

x

lesser

greater

At least half the group medians are ≤ x, which
is at least ⎣ ⎣n/5⎦ /2⎦ = ⎣n/10⎦ group medians.
• Therefore, at least 3 ⎣n/10⎦ elements are ≤ x.
• Similarly, at least 3 ⎣n/10⎦ elements are ≥ x.
September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.27

Minor simplification
• For n ≥ 50, we have 3 ⎣n/10⎦ ≥ n/4.
• Therefore, for n ≥ 50 the recursive call to

SELECT in Step 4 is executed recursively
on ≤ 3n/4 elements.

• Thus, the recurrence for running time
can assume that Step 4 takes time
T(3n/4) in the worst case.

• For n < 50, we know that the worst-case
time is T(n) = Θ(1).

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.28

Developing the recurrence

if i = k then return x
elseif i < k

then recursively SELECT the ith
smallest element in the lower part

else recursively SELECT the (i–k)th
smallest element in the upper part

SELECT(i, n)
1. Divide the n elements into groups of 5. Find

the median of each 5-element group by rote.
2. Recursively SELECT the median x of the ⎣n/5⎦

group medians to be the pivot.
3. Partition around the pivot x. Let k = rank(x).
4.

T(n)

Θ(n)

T(n/5)
Θ(n)

T(3n/4)

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.20

Choosing the pivot

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.21

Choosing the pivot

1. Divide the n elements into groups of 5.

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.22

Choosing the pivot

lesser

greater

1. Divide the n elements into groups of 5. Find
the median of each 5-element group by rote.

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.23

Choosing the pivot

x

lesser

greater

1. Divide the n elements into groups of 5. Find
the median of each 5-element group by rote.

2. Recursively SELECT the median x of the ⎣n/5⎦
group medians to be the pivot.

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.24

Analysis

x

lesser

greater

At least half the group medians are ≤ x, which
is at least ⎣ ⎣n/5⎦ /2⎦ = ⎣n/10⎦ group medians.

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.25

Analysis (Assume all elements are distinct.)

x

lesser

greater

At least half the group medians are ≤ x, which
is at least ⎣ ⎣n/5⎦ /2⎦ = ⎣n/10⎦ group medians.
• Therefore, at least 3 ⎣n/10⎦ elements are ≤ x.

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.26

Analysis (Assume all elements are distinct.)

x

lesser

greater

At least half the group medians are ≤ x, which
is at least ⎣ ⎣n/5⎦ /2⎦ = ⎣n/10⎦ group medians.
• Therefore, at least 3 ⎣n/10⎦ elements are ≤ x.
• Similarly, at least 3 ⎣n/10⎦ elements are ≥ x.
September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.27

Minor simplification
• For n ≥ 50, we have 3 ⎣n/10⎦ ≥ n/4.
• Therefore, for n ≥ 50 the recursive call to

SELECT in Step 4 is executed recursively
on ≤ 3n/4 elements.

• Thus, the recurrence for running time
can assume that Step 4 takes time
T(3n/4) in the worst case.

• For n < 50, we know that the worst-case
time is T(n) = Θ(1).

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.28

Developing the recurrence

if i = k then return x
elseif i < k

then recursively SELECT the ith
smallest element in the lower part

else recursively SELECT the (i–k)th
smallest element in the upper part

SELECT(i, n)
1. Divide the n elements into groups of 5. Find

the median of each 5-element group by rote.
2. Recursively SELECT the median x of the ⎣n/5⎦

group medians to be the pivot.
3. Partition around the pivot x. Let k = rank(x).
4.

T(n)

Θ(n)

T(n/5)
Θ(n)

T(3n/4)

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.20

Choosing the pivot

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.21

Choosing the pivot

1. Divide the n elements into groups of 5.

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.22

Choosing the pivot

lesser

greater

1. Divide the n elements into groups of 5. Find
the median of each 5-element group by rote.

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.23

Choosing the pivot

x

lesser

greater

1. Divide the n elements into groups of 5. Find
the median of each 5-element group by rote.

2. Recursively SELECT the median x of the ⎣n/5⎦
group medians to be the pivot.

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.24

Analysis

x

lesser

greater

At least half the group medians are ≤ x, which
is at least ⎣ ⎣n/5⎦ /2⎦ = ⎣n/10⎦ group medians.

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.25

Analysis (Assume all elements are distinct.)

x

lesser

greater

At least half the group medians are ≤ x, which
is at least ⎣ ⎣n/5⎦ /2⎦ = ⎣n/10⎦ group medians.
• Therefore, at least 3 ⎣n/10⎦ elements are ≤ x.

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.26

Analysis (Assume all elements are distinct.)

x

lesser

greater

At least half the group medians are ≤ x, which
is at least ⎣ ⎣n/5⎦ /2⎦ = ⎣n/10⎦ group medians.
• Therefore, at least 3 ⎣n/10⎦ elements are ≤ x.
• Similarly, at least 3 ⎣n/10⎦ elements are ≥ x.
September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.27

Minor simplification
• For n ≥ 50, we have 3 ⎣n/10⎦ ≥ n/4.
• Therefore, for n ≥ 50 the recursive call to

SELECT in Step 4 is executed recursively
on ≤ 3n/4 elements.

• Thus, the recurrence for running time
can assume that Step 4 takes time
T(3n/4) in the worst case.

• For n < 50, we know that the worst-case
time is T(n) = Θ(1).

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.28

Developing the recurrence

if i = k then return x
elseif i < k

then recursively SELECT the ith
smallest element in the lower part

else recursively SELECT the (i–k)th
smallest element in the upper part

SELECT(i, n)
1. Divide the n elements into groups of 5. Find

the median of each 5-element group by rote.
2. Recursively SELECT the median x of the ⎣n/5⎦

group medians to be the pivot.
3. Partition around the pivot x. Let k = rank(x).
4.

T(n)

Θ(n)

T(n/5)
Θ(n)

T(3n/4)

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.20

Choosing the pivot

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.21

Choosing the pivot

1. Divide the n elements into groups of 5.

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.22

Choosing the pivot

lesser

greater

1. Divide the n elements into groups of 5. Find
the median of each 5-element group by rote.

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.23

Choosing the pivot

x

lesser

greater

1. Divide the n elements into groups of 5. Find
the median of each 5-element group by rote.

2. Recursively SELECT the median x of the ⎣n/5⎦
group medians to be the pivot.

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.24

Analysis

x

lesser

greater

At least half the group medians are ≤ x, which
is at least ⎣ ⎣n/5⎦ /2⎦ = ⎣n/10⎦ group medians.

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.25

Analysis (Assume all elements are distinct.)

x

lesser

greater

At least half the group medians are ≤ x, which
is at least ⎣ ⎣n/5⎦ /2⎦ = ⎣n/10⎦ group medians.
• Therefore, at least 3 ⎣n/10⎦ elements are ≤ x.

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.26

Analysis (Assume all elements are distinct.)

x

lesser

greater

At least half the group medians are ≤ x, which
is at least ⎣ ⎣n/5⎦ /2⎦ = ⎣n/10⎦ group medians.
• Therefore, at least 3 ⎣n/10⎦ elements are ≤ x.
• Similarly, at least 3 ⎣n/10⎦ elements are ≥ x.
September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.27

Minor simplification
• For n ≥ 50, we have 3 ⎣n/10⎦ ≥ n/4.
• Therefore, for n ≥ 50 the recursive call to

SELECT in Step 4 is executed recursively
on ≤ 3n/4 elements.

• Thus, the recurrence for running time
can assume that Step 4 takes time
T(3n/4) in the worst case.

• For n < 50, we know that the worst-case
time is T(n) = Θ(1).

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.28

Developing the recurrence

if i = k then return x
elseif i < k

then recursively SELECT the ith
smallest element in the lower part

else recursively SELECT the (i–k)th
smallest element in the upper part

SELECT(i, n)
1. Divide the n elements into groups of 5. Find

the median of each 5-element group by rote.
2. Recursively SELECT the median x of the ⎣n/5⎦

group medians to be the pivot.
3. Partition around the pivot x. Let k = rank(x).
4.

T(n)

Θ(n)

T(n/5)
Θ(n)

T(3n/4)

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.20

Choosing the pivot

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.21

Choosing the pivot

1. Divide the n elements into groups of 5.

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.22

Choosing the pivot

lesser

greater

1. Divide the n elements into groups of 5. Find
the median of each 5-element group by rote.

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.23

Choosing the pivot

x

lesser

greater

1. Divide the n elements into groups of 5. Find
the median of each 5-element group by rote.

2. Recursively SELECT the median x of the ⎣n/5⎦
group medians to be the pivot.

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.24

Analysis

x

lesser

greater

At least half the group medians are ≤ x, which
is at least ⎣ ⎣n/5⎦ /2⎦ = ⎣n/10⎦ group medians.

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.25

Analysis (Assume all elements are distinct.)

x

lesser

greater

At least half the group medians are ≤ x, which
is at least ⎣ ⎣n/5⎦ /2⎦ = ⎣n/10⎦ group medians.
• Therefore, at least 3 ⎣n/10⎦ elements are ≤ x.

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.26

Analysis (Assume all elements are distinct.)

x

lesser

greater

At least half the group medians are ≤ x, which
is at least ⎣ ⎣n/5⎦ /2⎦ = ⎣n/10⎦ group medians.
• Therefore, at least 3 ⎣n/10⎦ elements are ≤ x.
• Similarly, at least 3 ⎣n/10⎦ elements are ≥ x.
September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.27

Minor simplification
• For n ≥ 50, we have 3 ⎣n/10⎦ ≥ n/4.
• Therefore, for n ≥ 50 the recursive call to

SELECT in Step 4 is executed recursively
on ≤ 3n/4 elements.

• Thus, the recurrence for running time
can assume that Step 4 takes time
T(3n/4) in the worst case.

• For n < 50, we know that the worst-case
time is T(n) = Θ(1).

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.28

Developing the recurrence

if i = k then return x
elseif i < k

then recursively SELECT the ith
smallest element in the lower part

else recursively SELECT the (i–k)th
smallest element in the upper part

SELECT(i, n)
1. Divide the n elements into groups of 5. Find

the median of each 5-element group by rote.
2. Recursively SELECT the median x of the ⎣n/5⎦

group medians to be the pivot.
3. Partition around the pivot x. Let k = rank(x).
4.

T(n)

Θ(n)

T(n/5)
Θ(n)

T(3n/4)

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.20

Choosing the pivot

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.21

Choosing the pivot

1. Divide the n elements into groups of 5.

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.22

Choosing the pivot

lesser

greater

1. Divide the n elements into groups of 5. Find
the median of each 5-element group by rote.

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.23

Choosing the pivot

x

lesser

greater

1. Divide the n elements into groups of 5. Find
the median of each 5-element group by rote.

2. Recursively SELECT the median x of the ⎣n/5⎦
group medians to be the pivot.

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.24

Analysis

x

lesser

greater

At least half the group medians are ≤ x, which
is at least ⎣ ⎣n/5⎦ /2⎦ = ⎣n/10⎦ group medians.

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.25

Analysis (Assume all elements are distinct.)

x

lesser

greater

At least half the group medians are ≤ x, which
is at least ⎣ ⎣n/5⎦ /2⎦ = ⎣n/10⎦ group medians.
• Therefore, at least 3 ⎣n/10⎦ elements are ≤ x.

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.26

Analysis (Assume all elements are distinct.)

x

lesser

greater

At least half the group medians are ≤ x, which
is at least ⎣ ⎣n/5⎦ /2⎦ = ⎣n/10⎦ group medians.
• Therefore, at least 3 ⎣n/10⎦ elements are ≤ x.
• Similarly, at least 3 ⎣n/10⎦ elements are ≥ x.
September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.27

Minor simplification
• For n ≥ 50, we have 3 ⎣n/10⎦ ≥ n/4.
• Therefore, for n ≥ 50 the recursive call to

SELECT in Step 4 is executed recursively
on ≤ 3n/4 elements.

• Thus, the recurrence for running time
can assume that Step 4 takes time
T(3n/4) in the worst case.

• For n < 50, we know that the worst-case
time is T(n) = Θ(1).

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.28

Developing the recurrence

if i = k then return x
elseif i < k

then recursively SELECT the ith
smallest element in the lower part

else recursively SELECT the (i–k)th
smallest element in the upper part

SELECT(i, n)
1. Divide the n elements into groups of 5. Find

the median of each 5-element group by rote.
2. Recursively SELECT the median x of the ⎣n/5⎦

group medians to be the pivot.
3. Partition around the pivot x. Let k = rank(x).
4.

T(n)

Θ(n)

T(n/5)
Θ(n)

T(3n/4)

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.20

Choosing the pivot

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.21

Choosing the pivot

1. Divide the n elements into groups of 5.

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.22

Choosing the pivot

lesser

greater

1. Divide the n elements into groups of 5. Find
the median of each 5-element group by rote.

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.23

Choosing the pivot

x

lesser

greater

1. Divide the n elements into groups of 5. Find
the median of each 5-element group by rote.

2. Recursively SELECT the median x of the ⎣n/5⎦
group medians to be the pivot.

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.24

Analysis

x

lesser

greater

At least half the group medians are ≤ x, which
is at least ⎣ ⎣n/5⎦ /2⎦ = ⎣n/10⎦ group medians.

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.25

Analysis (Assume all elements are distinct.)

x

lesser

greater

At least half the group medians are ≤ x, which
is at least ⎣ ⎣n/5⎦ /2⎦ = ⎣n/10⎦ group medians.
• Therefore, at least 3 ⎣n/10⎦ elements are ≤ x.

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.26

Analysis (Assume all elements are distinct.)

x

lesser

greater

At least half the group medians are ≤ x, which
is at least ⎣ ⎣n/5⎦ /2⎦ = ⎣n/10⎦ group medians.
• Therefore, at least 3 ⎣n/10⎦ elements are ≤ x.
• Similarly, at least 3 ⎣n/10⎦ elements are ≥ x.

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.27

Minor simplification
• For n ≥ 50, we have 3 ⎣n/10⎦ ≥ n/4.
• Therefore, for n ≥ 50 the recursive call to

SELECT in Step 4 is executed recursively
on ≤ 3n/4 elements.

• Thus, the recurrence for running time
can assume that Step 4 takes time
T(3n/4) in the worst case.

• For n < 50, we know that the worst-case
time is T(n) = Θ(1).

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.28

Developing the recurrence

if i = k then return x
elseif i < k

then recursively SELECT the ith
smallest element in the lower part

else recursively SELECT the (i–k)th
smallest element in the upper part

SELECT(i, n)
1. Divide the n elements into groups of 5. Find

the median of each 5-element group by rote.
2. Recursively SELECT the median x of the ⎣n/5⎦

group medians to be the pivot.
3. Partition around the pivot x. Let k = rank(x).
4.

T(n)

Θ(n)

T(n/5)
Θ(n)

T(3n/4)

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.20

Choosing the pivot

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.21

Choosing the pivot

1. Divide the n elements into groups of 5.

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.22

Choosing the pivot

lesser

greater

1. Divide the n elements into groups of 5. Find
the median of each 5-element group by rote.

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.23

Choosing the pivot

x

lesser

greater

1. Divide the n elements into groups of 5. Find
the median of each 5-element group by rote.

2. Recursively SELECT the median x of the ⎣n/5⎦
group medians to be the pivot.

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.24

Analysis

x

lesser

greater

At least half the group medians are ≤ x, which
is at least ⎣ ⎣n/5⎦ /2⎦ = ⎣n/10⎦ group medians.

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.25

Analysis (Assume all elements are distinct.)

x

lesser

greater

At least half the group medians are ≤ x, which
is at least ⎣ ⎣n/5⎦ /2⎦ = ⎣n/10⎦ group medians.
• Therefore, at least 3 ⎣n/10⎦ elements are ≤ x.

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.26

Analysis (Assume all elements are distinct.)

x

lesser

greater

At least half the group medians are ≤ x, which
is at least ⎣ ⎣n/5⎦ /2⎦ = ⎣n/10⎦ group medians.
• Therefore, at least 3 ⎣n/10⎦ elements are ≤ x.
• Similarly, at least 3 ⎣n/10⎦ elements are ≥ x.

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.27

Minor simplification
• For n ≥ 50, we have 3 ⎣n/10⎦ ≥ n/4.
• Therefore, for n ≥ 50 the recursive call to

SELECT in Step 4 is executed recursively
on ≤ 3n/4 elements.

• Thus, the recurrence for running time
can assume that Step 4 takes time
T(3n/4) in the worst case.

• For n < 50, we know that the worst-case
time is T(n) = Θ(1).

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.28

Developing the recurrence

if i = k then return x
elseif i < k

then recursively SELECT the ith
smallest element in the lower part

else recursively SELECT the (i–k)th
smallest element in the upper part

SELECT(i, n)
1. Divide the n elements into groups of 5. Find

the median of each 5-element group by rote.
2. Recursively SELECT the median x of the ⎣n/5⎦

group medians to be the pivot.
3. Partition around the pivot x. Let k = rank(x).
4.

T(n)

Θ(n)

T(n/5)
Θ(n)

T(3n/4)

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.20

Choosing the pivot

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.21

Choosing the pivot

1. Divide the n elements into groups of 5.

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.22

Choosing the pivot

lesser

greater

1. Divide the n elements into groups of 5. Find
the median of each 5-element group by rote.

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.23

Choosing the pivot

x

lesser

greater

1. Divide the n elements into groups of 5. Find
the median of each 5-element group by rote.

2. Recursively SELECT the median x of the ⎣n/5⎦
group medians to be the pivot.

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.24

Analysis

x

lesser

greater

At least half the group medians are ≤ x, which
is at least ⎣ ⎣n/5⎦ /2⎦ = ⎣n/10⎦ group medians.

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.25

Analysis (Assume all elements are distinct.)

x

lesser

greater

At least half the group medians are ≤ x, which
is at least ⎣ ⎣n/5⎦ /2⎦ = ⎣n/10⎦ group medians.
• Therefore, at least 3 ⎣n/10⎦ elements are ≤ x.

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.26

Analysis (Assume all elements are distinct.)

x

lesser

greater

At least half the group medians are ≤ x, which
is at least ⎣ ⎣n/5⎦ /2⎦ = ⎣n/10⎦ group medians.
• Therefore, at least 3 ⎣n/10⎦ elements are ≤ x.
• Similarly, at least 3 ⎣n/10⎦ elements are ≥ x.
September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.27

Minor simplification
• For n ≥ 50, we have 3 ⎣n/10⎦ ≥ n/4.
• Therefore, for n ≥ 50 the recursive call to

SELECT in Step 4 is executed recursively
on ≤ 3n/4 elements.

• Thus, the recurrence for running time
can assume that Step 4 takes time
T(3n/4) in the worst case.

• For n < 50, we know that the worst-case
time is T(n) = Θ(1).

September 28, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L6.28

Developing the recurrence

if i = k then return x
elseif i < k

then recursively SELECT the ith
smallest element in the lower part

else recursively SELECT the (i–k)th
smallest element in the upper part

SELECT(i, n)
1. Divide the n elements into groups of 5. Find

the median of each 5-element group by rote.
2. Recursively SELECT the median x of the ⎣n/5⎦

group medians to be the pivot.
3. Partition around the pivot x. Let k = rank(x).
4.

T(n)

Θ(n)

T(n/5)
Θ(n)

T(3n/4)

A familiar recurrence

𝑇 (𝑛) = 𝑇 (𝑛/5) + 𝑇 (3𝑛/4) + 𝑐𝑛
𝑇 (𝑛) ≤ 𝑑𝑛, 𝑛 ≥ 𝑛0(Guess)

≤ (1/5)𝑑𝑛 + (3/4)𝑑𝑛 + 𝑐𝑛(Strong induction)
≤ 𝑑𝑛(Choice of 𝑐, 𝑑)

	Even More Divide and Conquer
	Randomized median finding
	Median of medians

