CS3383 Lecture 1.2: Substitution method

David Bremner

January 23, 2024

Outline

Even More Divide and Conquer Substitution Method for recurrences Substitution examples

Example recurrence

► The Master Method actually works for this, but it won't always.

$$T(n) = 4T(n/2) + n$$
$$T(1) = 1$$

- Suppose that we want to prove $T(n) \in O(n^3)$ by induction
- Guess $T(n) \le cn^3$

Example of substitution

$$T(n) = 4T(n/2) + n$$

$$\leq 4c(n/2)^3 + n$$

$$= (c/2)n^3 + n$$

$$= cn^3 - ((c/2)n^3 - n) \leftarrow desired - residual$$

$$\leq cn^3 \leftarrow desired$$
whenever $(c/2)n^3 - n \geq 0$, for example, if $c \geq 2$ and $n \geq 1$.

Example (continued)

- We must also handle the initial conditions, that is, ground the induction with base cases.
- **Base:** $T(n) = \Theta(1)$ for all $n < n_0$, where n_0 is a suitable constant.
- For $1 \le n < n_0$, we have " $\Theta(1)$ " $\le cn^3$, if we pick c big enough.

Example (continued)

- We must also handle the initial conditions, that is, ground the induction with base cases.
- **Base:** $T(n) = \Theta(1)$ for all $n < n_0$, where n_0 is a suitable constant.
- For $1 \le n < n_0$, we have " $\Theta(1)$ " $\le cn^3$, if we pick c big enough.

This bound is not tight!

We shall prove that $T(n) = O(n^2)$.

We shall prove that $T(n) = O(n^2)$.

Assume that $T(k) \le ck^2$ for k < n:

$$T(n) = 4T(n/2) + n$$

$$\leq 4c(n/2)^{2} + n$$

$$= cn^{2} + n$$

$$= O(n^{2})$$

We shall prove that $T(n) = O(n^2)$.

Assume that $T(k) \le ck^2$ for k < n:

$$T(n) = 4T(n/2) + n$$

$$\leq 4c(n/2)^{2} + n$$

$$= cn^{2} + n$$

$$=cn+n$$

We shall prove that $T(n) = O(n^2)$.

Assume that $T(k) \le ck^2$ for k < n: T(n) = 4T(n/2) + n $\leq 4c(n/2)^2 + n$ = Wrong! We must prove the I.H. $=cn^2-(-n)$ [desired – residual] $< cn^2$ for **no** choice of c > 0. Lose!

IDEA: Strengthen the inductive hypothesis.

• Subtract a low-order term.

Inductive hypothesis: $T(k) \le c_1 k^2 - c_2 k$ for k < n.

IDEA: Strengthen the inductive hypothesis.

• Subtract a low-order term.

Inductive hypothesis: $T(k) \le c_1 k^2 - c_2 k$ for k < n.

$$T(n) = 4T(n/2) + n$$

$$= 4(c_1(n/2)^2 - c_2(n/2)) + n$$

$$= c_1n^2 - 2c_2n + n$$

$$= c_1n^2 - c_2n - (c_2n - n)$$

$$\le c_1n^2 - c_2n \text{ if } c_2 \ge 1.$$

IDEA: Strengthen the inductive hypothesis.

• Subtract a low-order term.

Inductive hypothesis: $T(k) \le c_1 k^2 - c_2 k$ for k < n.

$$T(n) = 4T(n/2) + n$$

$$= 4(c_1(n/2)^2 - c_2(n/2)) + n$$

$$= c_1n^2 - 2c_2n + n$$

$$= c_1n^2 - c_2n - (c_2n - n)$$

$$\le c_1n^2 - c_2n \text{ if } c_2 \ge 1.$$

Pick c_1 big enough to handle the initial conditions.

Substitution example II

$$T(0) = 1$$

$$T(n) = T(n-1) + c^n \qquad n > 0, c > 1$$

$$= T(n-2) + c^{n-1} + c^n$$

$$= \sum_{i=0}^n c^i \qquad \text{guess!}$$

$$= \frac{c^{n+1} - 1}{1} \qquad \text{geo. series}$$

Substitution example II

$$T(0)=1$$

$$T(n)=T(n-1)+c^n \qquad n>0, c>1$$

$$=T(n-2)+c^{n-1}+c^n$$

$$=\sum_{i=0}^n c^i \qquad \text{guess!}$$

$$=\frac{c^{n+1}-1}{c-1} \qquad \text{geo. series}$$
 base T(0)

induction apply recurrence to prove GS formula

Substitution example III

$$\begin{split} T(n) &= T(n/5) + T(3n/4) + cn \\ T(n) &\leq dn, n \geq n_0 \\ &\leq (1/5)dn + (3/4)dn + cn \\ &\leq dn \end{split} \qquad \text{(Guess)}$$
 (Strong induction)
$$\leq dn \qquad \text{(Choice of } c, d\text{)}$$