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Outline

Even More Divide and Conquer
Substitution Method for recurrences
Substitution examples



Example recurrence

▶ The Master Method actually works for this, but it won’t
always.

𝑇 (𝑛) = 4𝑇 (𝑛/2) + 𝑛
𝑇 (1) = 1

▶ Suppose that we want to prove 𝑇 (𝑛) ∈ 𝑂(𝑛3) by induction
▶ Guess 𝑇 (𝑛) ≤ 𝑐𝑛3
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desired – residual

whenever  (c/2)n3 – n ≥ 0, for example, 
if c ≥ 2 and n ≥ 1.

desired

residual
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Example (continued)
• We must also handle the initial conditions, 

that is, ground the induction with base 
cases.

• Base: T(n) = Θ(1) for all n < n0, where n0
is a suitable constant.

• For 1 ≤ n < n0, we have “Θ(1)” ≤ cn3, if we 
pick c big enough.
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A tighter upper bound?

We shall prove that T(n) = O(n2).
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A tighter upper bound?

We shall prove that T(n) = O(n2).
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A tighter upper bound?
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Wrong! We must prove the I.H.
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for no choice of c > 0.  Lose!

[ desired – residual ]
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A tighter upper bound!
IDEA: Strengthen the inductive hypothesis.
• Subtract a low-order term.
Inductive hypothesis: T(k) ≤ c1k2 – c2k for k < n.
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A tighter upper bound!
IDEA: Strengthen the inductive hypothesis.
• Subtract a low-order term.
Inductive hypothesis: T(k) ≤ c1k2 – c2k for k < n.

T(n) = 4T(n/2) + n
= 4(c1(n/2)2 – c2(n/2)) + n
= c1n2 – 2c2n + n
= c1n2 – c2n – (c2n – n)
≤ c1n2 – c2n if c2 ≥ 1.
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• We must also handle the initial conditions, 

that is, ground the induction with base 
cases.

• Base: T(n) = Θ(1) for all n < n0, where n0
is a suitable constant.

• For 1 ≤ n < n0, we have “Θ(1)” ≤ cn3, if we 
pick c big enough.

September 12, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.24

Example (continued)
• We must also handle the initial conditions, 

that is, ground the induction with base 
cases.

• Base: T(n) = Θ(1) for all n < n0, where n0
is a suitable constant.

• For 1 ≤ n < n0, we have “Θ(1)” ≤ cn3, if we 
pick c big enough.

This bound is not tight!
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A tighter upper bound?

We shall prove that T(n) = O(n2).
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for no choice of c > 0.  Lose!

[ desired – residual ]
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A tighter upper bound!
IDEA: Strengthen the inductive hypothesis.
• Subtract a low-order term.
Inductive hypothesis: T(k) ≤ c1k2 – c2k for k < n.
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A tighter upper bound!
IDEA: Strengthen the inductive hypothesis.
• Subtract a low-order term.
Inductive hypothesis: T(k) ≤ c1k2 – c2k for k < n.

T(n) = 4T(n/2) + n
= 4(c1(n/2)2 – c2(n/2)) + n
= c1n2 – 2c2n + n
= c1n2 – c2n – (c2n – n)
≤ c1n2 – c2n if c2 ≥ 1.
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A tighter upper bound?
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Substitution example II

𝑇 (0) = 1
𝑇 (𝑛) = 𝑇 (𝑛 − 1) + 𝑐𝑛 𝑛 > 0, 𝑐 > 1

= 𝑇 (𝑛 − 2) + 𝑐𝑛−1 + 𝑐𝑛

=
𝑛

∑
𝑖=0

𝑐𝑖 guess!

= 𝑐𝑛+1 − 1
𝑐 − 1

geo. series

base T(0)
induction apply recurrence to prove GS formula
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𝑐𝑖 guess!

= 𝑐𝑛+1 − 1
𝑐 − 1

geo. series
base T(0)

induction apply recurrence to prove GS formula



Substitution example III

𝑇 (𝑛) = 𝑇 (𝑛/5) + 𝑇 (3𝑛/4) + 𝑐𝑛
𝑇 (𝑛) ≤ 𝑑𝑛, 𝑛 ≥ 𝑛0 (Guess)

≤ (1/5)𝑑𝑛 + (3/4)𝑑𝑛 + 𝑐𝑛 (Strong induction)
≤ 𝑑𝑛 (Choice of 𝑐, 𝑑)
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