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The Master Theorem

If 3 constants b > 0, s > 1 and d > 0 such that
T(n)=">b- T((%]) + @(nd), then

T(n) =< O(nllogn) if d =1log,b (equiv. to b = s?)

{ O (n?) if d > log,b (equiv. to b < s9)
O(n'°e:%)  if d < log,b (equiv. to b > s)

(Simplified from Theorem 4.1 in CLRS4)



Master theorem, in pictures
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Master Theorem as generalized recursion tree

We assume w.l.o.g. n is an integer power of s. (If not, then what
do we do?)

The height of our recursion tree is log_n. At level ¢ of the
recursion tree (counting from 0) we have:

P the size of the data = 2

st

P the time for the combine step = ¢ - (%)d
P the number of recursive instantiations = b*
And so

logs n

T(n) = Zc-(ﬁ.)d-bi

1=0
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Proof of Master theorem, b = s

=0 i—0
If b = s¢, then
log n
T(n)=c-n?. (Z 1) = c¢-nlog_n
=0

so T'(n) is ©(nlogn).
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Proof of Master Theorem b s? (1 of 2)

Otherwise (b # s?), we have a geometric series,

T(n)=c-n?- <(S%) (;gsn _1>

Applying b/Dl—l = ZED

Sd b logsn+1
T(n)m~c-nd-((s—d) —1
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Proof of Master Theorem b = 5% (2 of 2)

From rules of powers and logarithms:

( b >logs n+1 b ( b )logs n b blogs n

b blogS n nlogs b
sd  nd sdnd
sdnd b log n+1 Sd p
T(n)= - c | — AL
b—s S b—s
b 5@
_ c - nlogs b c - nd




Branching versus subproblem size 1/2

d
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b
T(n):b_sd-c-nlogs i R
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Branching versus subproblem size 1/2

b Sd
_ log b d
= “CM Tt — “cen
b — sd b — sd

T(n)

Now we need to test b versus s<.

If b > s (log, b > d), first term dominates:

T(n) = c,n8: — cyn? (cy > c3 > 0)

< Cy nlogs b

> (cy — C3>nlogs ’

(0)
(€2)



Branching versus subproblem size 2/2
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Branching versus subproblem size 2/2

d
b S d

Ty =g eon™ =g -em

Now we need to test b versus s<.

If b < 54 (log, b < d), then

d
S d b
T(n):sd_b.cn_Sd_b.

new first term dominates, same argument: ©(n?).



Matrix Multiplication

The product of two n X n matrices X and Y'is a third n x n
matrix Z = XY, with

Zz’j - Z XikYk:j
k=1

where Z, . is the entry in row i and column j of matrix Z.
j

@i.J)

X Y Z
Calculating Z directly using this formula takes ©(n3) time.
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Decompose the input matrices into four blocks each

lenl v=leal

XY:[A B”E F]

C D||G H|
| AE+BG AF + BH |
~ | CE+ DG CF+ DH |




Matrix Multiplication: Blocks

Decompose the input matrices into four blocks each

A B E F
x=lep) Y=l ul :
subinstances
AFE, Bd,
Yy — A B E F AF, BH,
C D G H_ CFE, DG,

[ AE+BG AF+BH CF, DH
~ | CE+DG CF+DH |
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Matrix Multiplication: Blocks

8 subinstances of dimension 2, and taking cn?

2 . .
time to add the results: As with integer

mult., naive split

T(n) = 8‘T<g) 1 en? does.not .improve
running time.

Master Theorem (and log, 8 = 3 > 2) yields

T(n) € O(n'%28) = O(n?)
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Matrix Multiplication: Strassen Decomposition

As with integers, we find we need a decomposition that
reuses results.  Strassen found such a decomposition:

xy - | Dt~ B Py + Py

where

P = A(F—H)  P,=(A+D)E+H)
Py=(A+B)H  P,=(B—D)(G+H)
P,=(C+DE  P.=(A—C)E+F)
P, =D(G —E)
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call, we get a time recurrence of
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Matrix Multiplication: Strassen Decomposition

This looks complicated, but in saving one recursive  input size is
call, we get a time recurrence of m = n?, time is
O (m!'-4%%) time (vs
n
T(n) = 7-T(§> + en? O (m'?)).

Master Theorem (with log, 7 > log, 4 = 2) shows

T(n) € O(n'e27) c O(n281)
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