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The Master Theorem

If ∃ constants 𝑏 > 0, 𝑠 > 1 and 𝑑 ≥ 0 such that
𝑇 (𝑛) = 𝑏 ⋅ 𝑇 (⌈𝑛

𝑠 ⌉) + Θ(𝑛𝑑), then

𝑇 (𝑛) =
⎧{
⎨{⎩

Θ(𝑛𝑑) if 𝑑 > 𝑙𝑜𝑔𝑠𝑏 (equiv. to 𝑏 < 𝑠𝑑)
Θ(𝑛𝑑 log 𝑛) if 𝑑 = 𝑙𝑜𝑔𝑠𝑏 (equiv. to 𝑏 = 𝑠𝑑)
Θ(𝑛log𝑠 𝑏) if 𝑑 < 𝑙𝑜𝑔𝑠𝑏 (equiv. to 𝑏 > 𝑠𝑑)

(Simplified from Theorem 4.1 in CLRS4)
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Master theorem, in pictures
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Master Theorem as generalized recursion tree
We assume w.l.o.g. 𝑛 is an integer power of 𝑠. (If not, then what
do we do?)

The height of our recursion tree is log𝑠 𝑛. At level 𝑖 of the
recursion tree (counting from 0) we have:

▶ the size of the data = 𝑛
𝑠𝑖

▶ the time for the combine step = 𝑐 ⋅ ( 𝑛
𝑠𝑖 )𝑑

▶ the number of recursive instantiations = 𝑏𝑖

And so

𝑇 (𝑛) =
log𝑠 𝑛

∑
𝑖=0

𝑐 ⋅ ( 𝑛
𝑠𝑖 )

𝑑
⋅ 𝑏𝑖



Master Theorem as generalized recursion tree
We assume w.l.o.g. 𝑛 is an integer power of 𝑠. (If not, then what
do we do?)
The height of our recursion tree is log𝑠 𝑛.

At level 𝑖 of the
recursion tree (counting from 0) we have:

▶ the size of the data = 𝑛
𝑠𝑖

▶ the time for the combine step = 𝑐 ⋅ ( 𝑛
𝑠𝑖 )𝑑

▶ the number of recursive instantiations = 𝑏𝑖

And so

𝑇 (𝑛) =
log𝑠 𝑛

∑
𝑖=0

𝑐 ⋅ ( 𝑛
𝑠𝑖 )

𝑑
⋅ 𝑏𝑖



Master Theorem as generalized recursion tree
We assume w.l.o.g. 𝑛 is an integer power of 𝑠. (If not, then what
do we do?)
The height of our recursion tree is log𝑠 𝑛. At level 𝑖 of the
recursion tree (counting from 0) we have:

▶ the size of the data = 𝑛
𝑠𝑖

▶ the time for the combine step = 𝑐 ⋅ ( 𝑛
𝑠𝑖 )𝑑

▶ the number of recursive instantiations = 𝑏𝑖

And so

𝑇 (𝑛) =
log𝑠 𝑛

∑
𝑖=0

𝑐 ⋅ ( 𝑛
𝑠𝑖 )

𝑑
⋅ 𝑏𝑖



Master Theorem as generalized recursion tree
We assume w.l.o.g. 𝑛 is an integer power of 𝑠. (If not, then what
do we do?)
The height of our recursion tree is log𝑠 𝑛. At level 𝑖 of the
recursion tree (counting from 0) we have:

▶ the size of the data = 𝑛
𝑠𝑖

▶ the time for the combine step = 𝑐 ⋅ ( 𝑛
𝑠𝑖 )𝑑

▶ the number of recursive instantiations = 𝑏𝑖

And so

𝑇 (𝑛) =
log𝑠 𝑛

∑
𝑖=0

𝑐 ⋅ ( 𝑛
𝑠𝑖 )

𝑑
⋅ 𝑏𝑖



Master Theorem as generalized recursion tree
We assume w.l.o.g. 𝑛 is an integer power of 𝑠. (If not, then what
do we do?)
The height of our recursion tree is log𝑠 𝑛. At level 𝑖 of the
recursion tree (counting from 0) we have:

▶ the size of the data = 𝑛
𝑠𝑖

▶ the time for the combine step = 𝑐 ⋅ ( 𝑛
𝑠𝑖 )𝑑

▶ the number of recursive instantiations = 𝑏𝑖

And so

𝑇 (𝑛) =
log𝑠 𝑛

∑
𝑖=0

𝑐 ⋅ ( 𝑛
𝑠𝑖 )

𝑑
⋅ 𝑏𝑖



Master Theorem as generalized recursion tree
We assume w.l.o.g. 𝑛 is an integer power of 𝑠. (If not, then what
do we do?)
The height of our recursion tree is log𝑠 𝑛. At level 𝑖 of the
recursion tree (counting from 0) we have:

▶ the size of the data = 𝑛
𝑠𝑖

▶ the time for the combine step = 𝑐 ⋅ ( 𝑛
𝑠𝑖 )𝑑

▶ the number of recursive instantiations = 𝑏𝑖

And so

𝑇 (𝑛) =
log𝑠 𝑛

∑
𝑖=0

𝑐 ⋅ ( 𝑛
𝑠𝑖 )

𝑑
⋅ 𝑏𝑖



Master Theorem as generalized recursion tree
We assume w.l.o.g. 𝑛 is an integer power of 𝑠. (If not, then what
do we do?)
The height of our recursion tree is log𝑠 𝑛. At level 𝑖 of the
recursion tree (counting from 0) we have:

▶ the size of the data = 𝑛
𝑠𝑖

▶ the time for the combine step = 𝑐 ⋅ ( 𝑛
𝑠𝑖 )𝑑

▶ the number of recursive instantiations = 𝑏𝑖

And so

𝑇 (𝑛) =
log𝑠 𝑛

∑
𝑖=0

𝑐 ⋅ ( 𝑛
𝑠𝑖 )

𝑑
⋅ 𝑏𝑖



Proof of Master theorem, 𝑏 = 𝑠𝑑

𝑇 (𝑛) =
log𝑠 𝑛

∑
𝑖=0

𝑐 ⋅ ( 𝑛𝑑

(𝑠𝑖)𝑑 ) ⋅ 𝑏𝑖 = 𝑐 ⋅ 𝑛𝑑 ⋅ ⎛⎜
⎝

log𝑠 𝑛

∑
𝑖=0

( 𝑏
𝑠𝑑 )

𝑖
⎞⎟
⎠

If 𝑏 = 𝑠𝑑, then

𝑇 (𝑛) = 𝑐 ⋅ 𝑛𝑑 ⋅ ⎛⎜
⎝

log𝑠 𝑛

∑
𝑖=0

1⎞⎟
⎠

= 𝑐 ⋅ 𝑛𝑑 log𝑠 𝑛

so 𝑇 (𝑛) is Θ(𝑛𝑑 log 𝑛).
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Proof of Master Theorem 𝑏 ≠ 𝑠𝑑 (1 of 2)
Otherwise (𝑏 ≠ 𝑠𝑑), we have a geometric series,

𝑇 (𝑛) = 𝑐 ⋅ 𝑛𝑑 ⋅ (
( 𝑏

𝑠𝑑 )log𝑠 𝑛+1 − 1
𝑏

𝑠𝑑 − 1
)

Applying 1
𝑏/�−1 = �

𝑏−�

𝑇 (𝑛) = 𝑠𝑑

𝑏 − 𝑠𝑑 ⋅ 𝑐 ⋅ 𝑛𝑑 ⋅ (( 𝑏
𝑠𝑑 )

log𝑠 𝑛+1
− 1)

= 𝑠𝑑

𝑏 − 𝑠𝑑 ⋅ 𝑐 ⋅ 𝑛𝑑 ⋅ ( 𝑏
𝑠𝑑 )

log𝑠 𝑛+1
− 𝑠𝑑

𝑏 − 𝑠𝑑 ⋅ 𝑐 ⋅ 𝑛𝑑
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Proof of Master Theorem 𝑏 ≠ 𝑠𝑑 (2 of 2)
From rules of powers and logarithms:

( 𝑏
𝑠𝑑 )

log𝑠 𝑛+1
= 𝑏

𝑠𝑑 ⋅ ( 𝑏
𝑠𝑑 )

log𝑠 𝑛
= 𝑏

𝑠𝑑 ⋅ 𝑏log𝑠 𝑛

(𝑠𝑑)log𝑠 𝑛

= 𝑏
𝑠𝑑 ⋅ 𝑏log𝑠 𝑛

𝑛𝑑 = 𝑏 ⋅ 𝑛log𝑠 𝑏

𝑠𝑑𝑛𝑑

𝑇 (𝑛) = 𝑠𝑑𝑛𝑑

𝑏 − 𝑠𝑑 ⋅ 𝑐 ⋅ ( 𝑏
𝑠𝑑 )

log𝑠 𝑛+1
− 𝑠𝑑

𝑏 − 𝑠𝑑 ⋅ 𝑐 ⋅ 𝑛𝑑

= 𝑏
𝑏 − 𝑠𝑑 ⋅ 𝑐 ⋅ 𝑛log𝑠 𝑏 − 𝑠𝑑

𝑏 − 𝑠𝑑 ⋅ 𝑐 ⋅ 𝑛𝑑
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Branching versus subproblem size 1/2
𝑇 (𝑛) = 𝑏

𝑏 − 𝑠𝑑 ⋅ 𝑐 ⋅ 𝑛log𝑠 𝑏 − 𝑠𝑑

𝑏 − 𝑠𝑑 ⋅ 𝑐 ⋅ 𝑛𝑑

Now we need to test 𝑏 versus 𝑠𝑑.

If 𝑏 > 𝑠𝑑 (log𝑠 𝑏 > 𝑑), first term dominates:

𝑇 (𝑛) = 𝑐2𝑛log𝑠 𝑏 − 𝑐3𝑛𝑑 (𝑐2 > 𝑐3 > 0)
≤ 𝑐2𝑛log𝑠 𝑏 (O)
≥ (𝑐2 − 𝑐3)𝑛log𝑠 𝑏 (Ω)
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Branching versus subproblem size 2/2

𝑇 (𝑛) = 𝑏
𝑏 − 𝑠𝑑 ⋅ 𝑐 ⋅ 𝑛log𝑠 𝑏 − 𝑠𝑑

𝑏 − 𝑠𝑑 ⋅ 𝑐 ⋅ 𝑛𝑑

Now we need to test 𝑏 versus 𝑠𝑑.

If 𝑏 < 𝑠𝑑 (log𝑠 𝑏 < 𝑑), then

𝑇 (𝑛) = 𝑠𝑑

𝑠𝑑 − 𝑏
⋅ 𝑐 ⋅ 𝑛𝑑 − 𝑏

𝑠𝑑 − 𝑏
⋅ 𝑐 ⋅ 𝑛log𝑠 𝑏

new first term dominates, same argument: Θ(𝑛𝑑).
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Matrix Multiplication
The product of two 𝑛 × 𝑛 matrices 𝑋 and 𝑌 is a third 𝑛 × 𝑛
matrix 𝑍 = 𝑋𝑌, with

𝑍𝑖𝑗 =
𝑛

∑
𝑘=1

𝑋𝑖𝑘𝑌𝑘𝑗

where 𝑍𝑖𝑗 is the entry in row 𝑖 and column 𝑗 of matrix 𝑍.

X Y Z

i

j

(i, j )× =

Calculating 𝑍 directly using this formula takes Θ(𝑛3) time.



Matrix Multiplication: Blocks
Decompose the input matrices into four blocks each

𝑋 = [ 𝐴 𝐵
𝐶 𝐷 ] , 𝑌 = [ 𝐸 𝐹

𝐺 𝐻 ]

𝑋𝑌 = [ 𝐴 𝐵
𝐶 𝐷 ] [ 𝐸 𝐹

𝐺 𝐻 ]

= [ 𝐴𝐸 + 𝐵𝐺 𝐴𝐹 + 𝐵𝐻
𝐶𝐸 + 𝐷𝐺 𝐶𝐹 + 𝐷𝐻 ]

8
subinstances
𝐴𝐸, 𝐵𝐺,
𝐴𝐹, 𝐵𝐻,
𝐶𝐸, 𝐷𝐺,
𝐶𝐹, 𝐷𝐻
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Matrix Multiplication: Blocks
8 subinstances of dimension 𝑛

2 , and taking 𝑐𝑛2

time to add the results:

𝑇 (𝑛) = 8 ⋅ 𝑇 (𝑛
2

) + 𝑐𝑛2

Master Theorem (and log2 8 = 3 > 2) yields

𝑇 (𝑛) ∈ Θ(𝑛log2 8) = Θ(𝑛3)

As with integer
mult., naive split
does not improve
running time.
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Matrix Multiplication: Strassen Decomposition
As with integers, we find we need a decomposition that

reuses results.

Strassen found such a decomposition:

𝑋𝑌 = [ 𝑃5 + 𝑃4 − 𝑃2 + 𝑃6 𝑃1 + 𝑃2
𝑃3 + 𝑃4 𝑃1 + 𝑃5 − 𝑃3 − 𝑃7

]

where

𝑃1 = 𝐴(𝐹 − 𝐻) 𝑃5 = (𝐴 + 𝐷)(𝐸 + 𝐻)
𝑃2 = (𝐴 + 𝐵)𝐻 𝑃6 = (𝐵 − 𝐷)(𝐺 + 𝐻)
𝑃3 = (𝐶 + 𝐷)𝐸 𝑃7 = (𝐴 − 𝐶)(𝐸 + 𝐹)
𝑃4 = 𝐷(𝐺 − 𝐸)
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Matrix Multiplication: Strassen Decomposition

This looks complicated, but in saving one recursive
call, we get a time recurrence of

𝑇 (𝑛) = 7 ⋅ 𝑇 (𝑛
2

) + 𝑐𝑛2

Master Theorem (with log2 7 > log2 4 = 2) shows

𝑇 (𝑛) ∈ Θ(𝑛log2 7) ⊂ Θ(𝑛2.81)

input size is
𝑚 = 𝑛2, time is
Θ(𝑚1.404) time (vs
Θ(𝑚1.5)).
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