
Solving Large-Scale QAP Problems in

Parallel with the Search Library ZRAM

Adrian Br�ungger, Ambros Marzetta

Institute for Theoretical Computer Science

Swiss Federal Institute of Technology

CH-8092 Z�urich, Switzerland

Jens Clausen

Dept. of Mathematical Modeling, Bldg. 321

Technical University of Denmark

DK 2800 Lyngby, Denmark

Michael Perregaard

DIKU, Dept. of Computer Science, University of Copenhagen

Universitetsparken 1

DK 2100 Copenhagen �,Denmark

Abstract

Program libraries are one tool to make the cooperation between specialists from var-
ious �elds successful: the separation of application-speci�c knowledge from application-
independent tasks ensures portability, maintenance, extensibility, and 
exibility. The
current paper demonstrates the success in combining problem-speci�c knowledge for
the quadratic assignment problem (QAP) with the raw computing power o�ered by con-
temporary parallel hardware by using the library of parallel search algorithms ZRAM.
Solutions of previously unsolved large standard test-instances of the QAP are presented.

1 Introduction

The goal of problem solving using systems with many processors working in parallel is to
push the limits of the computable: solve problems faster than before, solve bigger problems,
or ultimately solve previously unsolved problems. Obviously, the limits for a given problem
type can be pushed the most if a combination of the fastest available hardware and the best
solution methods is used. However, the problem speci�c expertise and the hardware and
implementation expertise are seldomly found together. One way of relieving this problem
is software libraries with clear interfaces to the user|this enables the user and the library

1

http://wwwjn.inf.ethz.ch/ambros/
http://www.imm.dtu.dk/documents/users/jc/homepage.html


Parallel solution of QAP problems with ZRAM 2

builder to focus on their particular �eld of expertise. If in addition the library is designed for
and used on a powerful platform such as a supercomputer, one would expect a substantial
increase in solution capability for the problem in question.

The current paper address such a combination of solution methods, high performance
hardware, and a software library. The problem addressed is the Quadratic Assignment Prob-
lem (QAP), one of the hardest among the NP-hard combinatorial optimization problems.
We have combined the speci�c QAP knowledge gained over the years represented in the form
of the parallel code leading to the �rst solution of the classical Nugent 20 benchmark, and
the raw computing power o�ered by state-of-the-art parallel hardware (the NEC Cenju-3 and
the Intel Paragon) using ZRAM, a portable parallel program library for exhaustive search
problems.

In the following, we brie
y describe both the problem-speci�c methods used and the
interface to the Branch-and-Bound engine of ZRAM. To estimate the resources in terms
of time and search tree size necessary to solve a given instance, a tree-size estimator has
been a useful tool{this is also described. The properties of the parallel algorithm are brie
y
mentioned. Although no �ne tuning of the parallel code provided has been performed,
good speedups as well as minimal parallel search overhead have been observed. Finally, the
solutions of 10 previously unsolved QAP benchmark instances from QAPLIB are reported.
Parallelism reduced the solution time for the largest of these from (estimated) 2 years to 12
days.

2 Branch and Bound as an interface between two

worlds

A general algorithmic paradigm to �nd a minimum of the objective function for an NP-
hard combinatorial optimization problem de�ned on a space of exponential size is Branch
and Bound. When Mitten [13] gave a formal description of Branch and Bound, he clearly
identi�ed the interface between the problem-speci�c parts and the problem-independent
parts of the search algorithm. Branch and Bound can be viewed as the interface between
the two worlds of application-speci�c knowledge and problem-independent tree search. This
approach identi�es four problem-dependent functions for Branch and Bound:

1. The branching rule
The branching rule recursively divides the space of solutions into a number of disjoint
subspaces thereby de�ning a search tree T , where each node represents a (sub-) problem
instance to be solved.

2. The bounding procedure
In principle, T could be explicitly computed. However, in most cases, T contains an
exponential number of nodes making this impossible. By computing a lower bound
on the objective function in a node of T , the expansion of the respective subtree can
be omitted whenever the lower bound exceeds a currently known best solution, and a
cut-o� occurs.



Parallel solution of QAP problems with ZRAM 3

3. The solution test
The solution test simply determines whether an optimal solution has been found for a
subproblem. Whenever this is the case, the recursive division of the state space stops.

4. The upper bounding procedure (optional)
In order to get good initial solutions, thereby increasing the probability that cut-o�s
occur, an upper bounding procedure can be provided. It produces a feasible solution
to the problem in a node of T . This solution is compared to the currently best known
solution and could replace it.

There are several possibilities for traversing the search tree: depth-�rst (DFS), breadth-
�rst (BFS) or best-�rst (BeFS, where the nodes are expanded according to lower bounds;
the one with the smallest lower bound is expanded �rst). DFS has a linear space-complexity
in the depth of the search tree since it stores the subproblems on a stack. BFS must store a
FIFO queue and BeFS must store a priority queue of active nodes, both having exponential
worst-case size in the size of the input. The drawback of the preferable space requirement of
DFS is that DFS potentially expands too large a number of nodes. It can easily be seen that
BeFS expands a minimum number of nodes of T until it �nds the optimum node (assuming
that the lower bounding function increases along each path from the root to a leaf in the
search tree). If we, however, know the optimal solution value in advance, DFS also expands
only the minimum number of nodes of T . So if we have a high-quality heuristic producing
near-optimal or even optimal solutions, the application of DFS is strongly suggested. Recent
research [9] indicates that DFS may be competitive also when no near-optimal solution is
known, the reason being that BeFS is ine�cient when it comes to fast identi�cation of good
feasible solutions.

3 The Quadratic Assignment Problem

The Quadratic Assignment Problem is often formulated as the problem of assigning n given
facilities to n given locations such that the total cost of the assignment is minimized. The
total cost has a a) �xed contribution from the assignments of the facilities (e.g. the cost
of establishing each facility in the chosen location) and b) a variable contribution from the
interaction between each pair of facilities depending on the location of the involved facilities.
Hence in its most general form, QAP is given by a two-dimensional matrix C with cik equal
to the �xed cost of assigning facility i to location k, and a four-dimensional matrix G with
gikjl � 0, where gikjl corresponds to the variable cost of assigning facility i to location k and
facility j to location l:

QAP (G;C) := min
nP

i=1

nP

k=1

nP

j=1

nP

l=1
gikjlxikxjl +

nP

i=1

nP

k=1
cikxik

s.t.
Pn

i=1 xik = 1; k 2 f1; :::; ng
Pn

k=1 xik = 1; i 2 f1; :::; ng

xik 2 f0; 1g; i; k 2 f1; :::; ng:



Parallel solution of QAP problems with ZRAM 4

Most research on QAP has focused on the Koopmans{Beckman version of the problem,
in which the variable costs can be broken into a 
ow component and a distance component.
For each pair of facilities (i; j) a 
ow of communication f(i; j) is known, and for each pair of
locations (k; l) the corresponding distance d(k; l) is known. The transportation cost between
facilities i and j, given that i is assigned to location k and j is assigned to location l, is then
f(i; j) � d(k; l).

Each feasible solution corresponds to a permutation of the facilities, and letting S denote
the group of permutations of n elements, the problem can hence in this case be stated as

min�2S
Pn

i=1

Pn
j=1 fi;j � d�(i);�(j)

Initially no facilities have been placed on a location, and subproblems of the original
problem arise when some but not all facilities have been assigned to locations. The number
of feasible solutions grows exponentially: For a problem with n facilities to be located, the
number of feasible solutions is n!, which for n = 20 is appr. 2:43 � 1018.

Next we brie
y review each of the four components of a Branch and Bound algorithm
mentioned in the preceding section for the QAP application. Our description follows [7].

3.1 The Gilmore{Lawler Bound

The Gilmore{Lawler Bound GLB is based on the idea of joining exact cost information
and simple bound information for the cost of assigning facility i on location k into one
matrix, L, which is then used as cost matrix in the solution of a linear assignment problem
(LAP). The exact cost information consists of the costs which will be incurred independently
of succeeding assignments, whereas the bound information relates to the costs which vary
depending on the succeeding assignments.

Regarding the variable costs, these relate to the cost of communication between facility
i to be located next and all other unassigned facilities. Sorting the 
ow coe�cients from
i to unassigned facilities ascendingly and the distance coe�cients from location k to free
locations descendingly, the scalar product of these two vectors is a lower bound on the cost
incurred from the 
ow between i and the unassigned facilities. More formally, de�ning f 0i
and d0k to be the i-th row of F respectively k-th row of D with the diagonal elements fii
respectively dkk left out, the matrix L = (lik) is de�ned by

lik := hf 0i ; d
0

ki� + fiidkk + cik: (1)

GLB is then obtained by solving an LAP with cost matrix L as formalized in the following
proposition.

Proposition 1 Let F and D be symmetric n� n matrices and let C 2 <n�n. Let L be the
matrix with entries as de�ned in (1). Then

QAP (F;D;C) � GLB(F;D;C) := LAP (L): (2)

For non-root nodes of the search tree we proceed as follows. When no assignments have
been made, the cost incurred by locating facility i on location k is fiidkk + cik. Suppose now



Parallel solution of QAP problems with ZRAM 5

that facility j has already been assigned to location l. The contribution fijdkl must then
be added to the exact cost information. This has to be done for all assigned facilities. The
process can be seen as a modi�cation of the initial linear costs cik leading to a QAP of reduced
dimension, but with the same properties as the full problem. Note that the contribution
originating in the 
ow between �xed facilities is 0 initially, and increases gradually with an
increasing number of assigned facilities.

The complexity of calculating GLB is dominated by the solution of the linear assignment
problem and is hence O(n3). However, note that if a QAP in the so called general form is
considered in which the cost of communication between two facilities i and j assigned to two
locations k and l cannot be broken down into factors fij and dkl, then the bound calculation
has complexity O(n5). The reason is that for each combination of unassigned facility and
free location, an LAP has to be solved in order to �nd the corresponding coe�cient of L.
For problems in the Koopmans{Beckmann form, these LAPs have coe�cients corresponding
to products of 
ow coe�cients and distances and the optimal solution can hence be found
by computing minimal scalar products as described above.

3.2 The branching rule of Mautor and Roucairol

The processing of each node consists essentially of bounding and branching. Branching is
performed as described in [12] supplemented with the forcing of assignments as described
in [8]. Branching is performed on facilities and is based on the reduced cost information
generated when solving the LAP with cost matrix L in the GLB calculation. If the sum
of the GLB computed and the reduced cost of entry (i; k) is greater than or equal to the
value of the current best solution, the GLB for the subspace generated by assigning facility
i to location k will exceed the current best solution value thus implying that the optimal
solution will not belong to the subspace. Hence a number of assignments can be ruled out. If
a facility (or location) exists for which only one assignment permitting a solution better than
the current best is left, a forced assignment takes place. After a forced assignment, a new
GLB calculation is performed and the branching process is repeated. The process stops when
each facility and each location has at least two possible assignments. The location i with
fewest remaining possible assignments is then chosen for branching, and a new subproblem
is created for each k among these by assigning i to k.

In addition the symmetry testing of [2, 12] is implemented. Note that even if branching
on locations exactly as described above for facilities is possible, the symmetry testing requires
that branching is performed on facilities.

3.3 Finding a �rst feasible solution

The �rst feasible solution to be used as upper bound can for QAP be found using any one out
of a number of very e�cient heuristics as e.g. simulated annealing and tabu search. These
in general produce the optimal solution for the problem instances solvable to optimality.
Thus, the solution by Branch and Bound can be seen as an optimality check. However, for
other combinatorial optimization problems, such as the Job Shop Scheduling Problem, the
situation is di�erent, cf. [14].



Parallel solution of QAP problems with ZRAM 6

For QAP we have used a variant of simulated annealing, which enabled us to �nd the
optimal solution of all problems solvable to optimality by Branch and Bound within 5 seconds
of parallel computing time. Details can be found in [8, 4].

4 The library ZRAM of parallel search algorithms

ZRAM [5] is a library of parallel search algorithms. Its layered architecture (Figure 1) makes
it easily portable and extensible. It has four layers separated by clearly de�ned interfaces.

� The hardware layer hides all machine dependencies. ZRAM requires the underlying
system to be capable of passing messages. A shared memory is not necessary, nor does
ZRAM use any information about the topology of the underlying network. The MPI
version of the hardware layer is portable to a broad range of machines including the
NEC Cenju-3 and workstation networks.

� The virtual machine abstracts from the hardware and contains higher-level function-
ality convenient for programming parallel search algorithms. Among its features are
dynamic load balancing, distributed termination detection and checkpointing. Com-
putations can be interrupted and continued later with a di�erent number of processors,
which makes ZRAM suitable for long-term computations.

� The layer of search algorithms and data structures contains parallel search engines for
branch and bound, reverse search [1] and backtrack as well as a general implementation
of Knuth's tree size estimation [11].

� In the top layer, a variety of applications demonstrate the usability of the ZRAM in-
terfaces. The quadratic assignment problem, the traveling salesman, the 15-puzzle and
a vertex cover algorithm all use the Branch and Bound engine. Vertices of polyhedra,
connected induced subgraphs, polyominoes and Euclidean spanning trees are enumer-
ated by the reverse search engine. The application layer generally contains no explicit
parallelism.

ZRAM is written in ANSI C, as this is the only language available on all the computers we
use. ZRAM di�ers from other available search libraries (such as BOB, [10]) in the generality
of the functions o�ered, in its layered structure and in the convenient application interface.

4.1 Dynamic load balancing

In practice, the size and shape of a search tree is unknown at the beginning of a computation,
and hence it cannot at that time be partitioned into subtrees of equal size. Therefore,
dynamic load balancing is necessary, i.e. redistribution of the work among processors during
computation. Implementations of dynamic load balancing face a trade-o� between processor
utilization and communication overhead

A dynamic load balancing mechanism is provided by the virtual machine of ZRAM. It
is used for depth-�rst Branch and Bound, reverse search and for the tree size estimator. In
an abstract global view, the virtual machine manages just one distributed data structure: a



Parallel solution of QAP problems with ZRAM 7

Figure 1: ZRAM architecture

Applications

Search 
engines

Service 
modules

Host 
systems

Workstation
network

MPI

Quadratic Assignment, Traveling Salesman, 15-Puzzle, Vertex 
Enumeration, Euclidean Spanning Trees, ...

Intel
Paragon

NEC
Cenju-3MacGiga-

Booster

Branch
and

Bound

Reverse
Search Backtrack

Virtual front end, termination detection,
 dynamic load balancing, checkpointing

Tree Size
Estimation

Message passing (MPI-)

Virtual machine

Application interface

global set of work units. For Branch and Bound, a work unit is a subtree represented by
its root node. Every processor repeatedly removes a work unit from the global set, does
whatever work it has to do, and inserts zero or more new smaller work units into the set.
When the virtual machine detects that the set is empty, the algorithm terminates.

Viewed locally, every processor manages its own local list of work units. It can remove
items from the list and insert others. When the list becomes empty, it sends an \I need work"
message to some other randomly selected processor. If this second processor's list contains
at least two elements, it sends some of these back to the requesting processor. Otherwise
the second processor forwards the \I need work" message to a third processor. To keep
the algorithm simple, the third and all succeeding processors are selected in a round-robin
fashion rather than randomly. The statistics gathered during some QAP runs of several hours
show that \I need work" messages are almost never forwarded except in the last few minutes
before the program terminates. A simple and fast load balancing algorithm as described
hence seems su�cient for coarse-grain parallelism.

4.2 Checkpointing and dynamic modi�cation of the number of

processors

The solution of a QAP instance can take several days on a powerful parallel computer, and
hence the number of available processors may change, and system chrashes may appear
during solution. Parallel combinatorial optimization software has to cope with such issues.
It must be possible to interrupt a computation without losing a lot of work and to restart it
later with a di�erent number of processors from the same point it left o�.

The virtual machine of ZRAM transfers data between processors in order to balance the
load. It can as well transparently save the same data to disk. The global data, which are never
modi�ed, are saved once at the beginning of the computation. At regular intervals (every
hour) during the tree search the computation is interrupted, the dynamic load balancing



Parallel solution of QAP problems with ZRAM 8

algorithm is brought into a known state, and the global set of work units is saved to disk.
The virtual machine then calls a function in the search engine which saves the current upper
bound. On machines supporting a signal facility, checkpointing can also be triggered by
sending a signal to the process group before killing the job.

To restart the computation, the virtual machine �rst reads the global data and broadcasts
it to all processors. It then reads the set of work units and redistributes it onto the new set
of processors. Finally it calls a s earch engine function to read the current upper bound.

4.3 The estimator

Since we cannot predict the running times of a Branch and Bound algorithm by traditional
complexity analysis, another approach is needed for estimating the resources such as running
time involved in the actual solution of an instance. The \di�culty" of a given instance has to
be estimated in order to decide whether it is solvable by the available algorithm in reasonable
time or not.

Knuth [11] has introduced a tree-size estimator that allows a classi�cation in this sense:
by evaluating a relatively small number of paths of the search tree and computing the degree
of every node on these paths, the size of the full tree can be estimated. The ZRAM imple-
mentation of this estimator has been (trivially) parallelized: every processor independently
follows some number of paths in the search tree and collects the data needed. At the end
of the computation, one processor gathers the results and computes the mean and standard
deviation.

5 Computational results

5.1 Hardware: NEC Cenju-3 and Intel Paragon

In our computation we used two massively parallel computers: the NEC Cenju-3 and the
Intel Paragon XP/S22. Both systems share the following basic properties:

� distributed memory

� SPMD (single program, multiple data)

� message passing

The Intel Paragon XP/S22 system consists of 148 compute nodes, each containing 3 Intel
i860XP processors with a peak performance of 75MFLOPS each (usually one is used for
communication and two are real application processors). All nodes appear to be connected
to all other nodes, and communication performance is uniform (the bisection bandwidth for
the system used is 5.6GByte/s). Physically, the nodes are arranged in a two-dimensional
mesh. A �xed-function component at each compute node performs the actual routing of the
messages.

The NEC Cenju-3 is a research prototype machine that contains 128 compute nodes
(MIPS VR4400SC) with 64MByte of local memory each. The peak performance reaches
50MFLOPS per compute node. The compute nodes are connected via a multistage network



Parallel solution of QAP problems with ZRAM 9

based on 4x4 switches, achieving about 40MByte/s communication bandwidth between two
compute nodes.

5.2 Standard test instances from the QAPLIB

The algorithms were tested on a set of symmetric standard test instances retrieved from the
QAPLIB [6]. We further constructed two new nugent-type instances nug21 and nug22 from
the larger standard instance nug30. Both are now included in the QAPLIB.

5.3 Quality of the ZRAM estimator for the QAP

We have estimated the sizes of the search-trees for several non-trivial instances { all the
instances we could solve that led to trees with more than 10 million nodes { and compared
the estimates with the actual number of nodes generated when solving the instances. The
sample size was 10 000 paths in the search trees. The number of nodes evaluated in the
estimate was therefore less than 1 percent of the number of nodes evaluated in the solution.
Figure 2 shows the accuracy of the estimates. The top curve shows the relative deviation
of the estimated upper bound on the number of nodes (horizontal line, normalized to 1).
The bottom curve shows the relative deviation of the estimated lower bound of nodes in
the respective search trees. Note that the scale for the deviation is logarithmic. For most
instances (nug21, rou20, nug17, tai17a, had18, tai20a, had16 and nug18) the estimates are
very accurate; the actual number of nodes di�er less than ten percent from the estimates.
For some examples (nug22, esc16c and esc16d) the estimated upper bound is pessimistic,
but the estimated lower bound is still very close to the actual number of nodes in the search
tree. Only for three instances (had20, nug20 and esc16b) do the estimated number of nodes
di�er signi�cantly from the actual number of nodes; the estimates are too conservative.

5.4 Load balancing

Load balancing prevents processors from starvation by feeding them with useful work while
keeping the communication overhead as small as possible. The �rst characteristic variable to
measure the parallelism overhead is the work done. When exploring a search tree in parallel,
the evaluation order for the nodes in the tree di�ers inherently from the one occurring in
a sequential implementation. New upper bounds are detected at di�erent times. As a
consequence, a parallel Branch and Bound algorithm usually expands a di�erent number of
nodes in a search tree than the corresponding sequential implementation. This is not the
case for the QAP. Since the initial heuristic for problems solvable to optimality generates
an optimal solution, no super
uous work (expansion of nodes with a lower bound that
exceeds the solution cost) is done, except for the nodes in the search tree that have a lower
bound equal to the optimal solution. However, to prevent heavy communication in the
starting phase of the branch and bound search, ZRAM simultaneously expands the tree on
all processors until the tree reaches a size where every processor can start working on its
own part of the search tree. Therefore, the total number of expanded nodes increases with
an increasing number of processors, but the increase in negligible, cf. Figure 3.



Parallel solution of QAP problems with ZRAM 10

Figure 2: Quality of the ZRAM estimator for some hard QAP instances

Estimator: 10'000 paths for some hard
instances

0.1

1

10

nu
g2

2

nu
g2

1

ro
u2

0

nu
g1

7

es
c1

6c

es
c1

6d

ta
i1

7a

ha
d1

8

ta
i2

0a

ha
d1

6

nu
g1

8

ha
d2

0

nu
g2

0

es
c1

6b

instances

re
l. 

de
vi

at
io

n

Figure 3: The parallel Branch and Bound evaluates an almost constant number of nodes
when varying the number of processors.

Parallel overhead:
Nr. of nodes for five QAPLIB instances

100000

1000000

10000000

0 10 20 30 40

nr. of processors

chr22a
chr22b
nug16a
nug16b
nug15nr

. o
f n

od
es



Parallel solution of QAP problems with ZRAM 11

Figure 4: Work ratio and number of messages sent during the solution of nug17 on 16
processors.

Parallel overhead:
Communication introduced

and work performed

0.1

1

10

100

1000

10000

100000

2 4 6 8

10 12 14 16 18 20 22 24 26 28 30 32 34

time [Min]

nr
. o

f n
od

es
 a

nd
m

es
sa

ge
s

The second characteristic overhead introduced with parallel Branch and Bound is the
trade-o� between communication and load balance. At the cost of communication, the load
can be balanced between the processors. We measured the communication overhead by
counting the number of messages that were sent during a given time period. Figure 4 shows
the typical behavior of the ZRAM load balancer for a QAP instance (nug17 solved with
16 processors on the Intel Paragon). The x-axis indicates the time periods: the rightmost
group of bars shows what happened in the last two minutes the algorithm was running. The
leftmost bar in each group of bars shows the number of evaluated nodes per second in that
time period. Note that the y-axis has a logarithmic scale. The next bar in the group gives
the number of work request messages that were sent during the time period. The third bar
gives the number of forwarded request messages. There is no communication at all at the
beginning of the algorithm since all processors are busy, so no work requests are sent. After
half of the total time has elapsed, some processors become idle and their work requests are
immediately answered by other processors. In the very last phase of the tree search, most
of the work requests have to be forwarded to a third processor since the processor which is
asked for work is idle itself. The communication overhead does not slow down the progress of
the algorithm at all: the rate at which nodes are evaluated remains almost constant during
the whole running time of the algorithm.

5.5 Speedup

Although there are theoretical limitations on speedup [3], an almost linear speedup should
be achievable for adequate problem size of well suited problems. QAP problems are ideal
from this point of view. For the Intel Paragon with 32 processors, we achieved a speedup
between 25 and 28.5 for �ve non-trivial instances. The actual running times for the instances



Parallel solution of QAP problems with ZRAM 12

varied from 413 seconds (nug16b with 362 768 nodes in the search tree) up to 4436 seconds
(nug16a with 2 920 487 nodes in the search tree) on one processor. For further details see [4].

5.6 Solution of 10 previously unsolved QAP instances

The ZRAM estimator allows the classi�cation of the di�culty of a collection of QAP instances
accurately. Amongst the QAPLIB instances, 10 problems were identi�ed to be solvable in
reasonable time. Table I and Table II show the results. The largest instance solved is
nug22 with about 5 � 1010 nodes in the search tree. The solution took about 12 days with a
varying number of processors involved. On a state-of-the-art single processor workstation,
the computation would have taken about two years.

Table I: 10 previously unsolved instances from the QAPLIB

name cost hardware procs nodes time [Min]
had16 3 720 NEC Cenju-3 32 18 770 885 4
had18 5 358 NEC Cenju-3 16 761 452 218 442
had20 6 922 Paragon 96 7 616 968 110 2875
tai17a 491 812 NEC Cenju-3 32 20 863 039 6
tai20a 703 482 Paragon 96 2 215 221 637 684
rou20 725 522 NEC Cenju-3 32 2 161 665 137 961
nug21 2 438 NEC Cenju-3 16 3 631 929 368 3213
nug22 3 596 NEC Cenju-3 48...96 48 538 844 413 12780
esc32e 2 NEC Cenju-3 32 12 515 753 10
esc32f 2 NEC Cenju-3 32 12 321 016 10

6 Conclusion

Cooperation between specialists in various �elds of computer science - combinatorial opti-
mization and development of parallel libraries for search problems - has led to the solution of
previously unsolved QAP problems. The key issue to a successful combination of problem-
speci�c knowledge and problem-independent tree search algorithms is the design of simple
but well-de�ned interfaces. The usefulness of parallel search libraries has been demonstrated,
and the clear layer structure of ZRAM has made the implementation of an application such
as the QAP easy. Although ZRAM was not tuned for the special structure of the quadratic
assignment problem, the introduced search overhead was minimal. Good speedups have
been achieved while running times on one processor remained competitive. Since ZRAM is
implemented on a variety of parallel machines including state-of-the-art hardware such as
the NEC Cenju-3 and the Intel Paragon, the raw computing power o�ered by these ma-
chines was immediately available to solve several previously unsolved standard benchmark
instances optimally.



REFERENCES 13

Table II: 10 previously unsolved instances from the QAPLIB: Solution assignments

name assignment
had16 8 3 15 0 6 7 5 10 14 13 11 9 4 2 1 12
had18 7 14 15 13 6 17 5 10 0 9 11 4 12 2 1 16 8 3
had20 7 14 0 13 18 5 6 16 15 11 9 10 4 19 1 2 3 8 17 12
tai17a 11 1 5 6 3 7 13 4 10 2 15 12 16 8 0 9 14
tai20a 9 8 11 19 18 2 13 5 16 10 4 6 14 15 17 1 3 7 12 0
rou20 0 18 1 13 9 15 10 19 8 4 6 3 7 17 14 2 11 16 12 5
nug21 3 20 2 8 12 1 4 13 17 10 15 9 5 14 19 18 7 6 0 11 16
nug22 1 20 8 9 6 2 0 18 7 19 16 4 12 5 11 15 10 21 17 3 13 14
esc32e 0 1 4 5 7 15 12 18 8 31 6 21 23 19 3 11

2 16 28 20 10 24 26 17 29 30 22 27 13 14 25 9
esc32f 0 1 4 5 7 15 9 6 8 27 29 3 31 30 21 11

2 16 25 17 12 24 28 20 22 23 18 19 13 14 26 10

Acknowledgments. This work has been supported by the SNSF (Swiss National Science
Foundation) and ETH Z�urich. We would like to thank NEC Corporation and CSCS/SCSC
(Swiss Center for Scienti�c Computing) for letting us use their NEC Cenju-3.

References

[1] D. Avis and K. Fukuda, Reverse search for enumeration, Discrete Applied Mathematics,
65, (1996) 21{46.

[2] M. S. Bazaraa and O. Kirca, A Branch-and-Bound-Based Heuristic for Solving the
Quadratic Assignment Problem, Naval Research Logistics Quarterly, 30 (1983), 287{
304.

[3] A. Br�ungger, A parallel best-�rst Branch and Bound algorithm for the traveling sales-
person problem, in Proceedings of the 9th International Parallel Processing Symposium,
Workshop on Solving Irregular Problems on Distributed Memory Machines, S. Ranka
ed., 1995, 98{106.

[4] A. Br�ungger, A. Marzetta, J. Clausen, and M. Perregaard, Joining Forces in Solving
Large-Scale QAP in Parallel, Proceedings of IPPS '97, 11. IEEE International Parallel
Processing Symposium, 1997, 418{427.

[5] A. Br�ungger, A. Marzetta, K. Fukuda, J. Nievergelt, The Parallel Exhaustive Search
Workbench ZRAM and its Applications, to appear in Annals of Operations Research.

http://wwwjn.inf.ethz.ch/ambros/aor_zram.pdf
http://wwwjn.inf.ethz.ch/ambros/ipps97_qap_zram.pdf
http://www.ethz.ch/
http://www.snf.ch/


REFERENCES 14

[6] R. E. Burkard, S. Karisch and F. Rendl, QAPLIB|A Quadratic Assignment Problem
Library, Journal of Global Optimization 10 (1997), 391{403. Also available via WWW
from http://www.diku.dk/~karisch/qaplib

[7] J. Clausen, S. Karisch, M. Perregaard and F. Rendl, On the Applicability of Lower
Bounds for Solving Rectilinear Quadratic Assignment Problems in Parallel, DIKU Re-
port 96/24, to appear in Computational Optimization and Applications.

[8] J. Clausen and M. Perregaard, Solving Large Quadratic Assignment Problems in Par-
allel, Computational Optimization and Applications 8 (1997), 111{128.

[9] J. Clausen and Michael Perregaard, On the Best Search Strategy in Parallel Branch-
and-Bound - Best-First-Search vs. Lazy Depth-First-Search, DIKU report 96/14, to
appear in Annals of OR.

[10] B. Le Cun and C. Roucairol, BOB: a Uni�ed Platform for Implementing Branch-and-
Bound like Algorithms, Tech. Rep., 95/16, Laboratoire PRiSM, Universite de Versailles
- Saint Quentin en Yvelines, 78035 Versailles Cedex, France, 1995. Also available via
WWW from http://www.masi.uvsq.fr/english/parallel/cr/bob_us.html

[11] D. E. Knuth, Estimating the E�ciency of Backtrack Programs,Math. Comp., 29 (1975),
121{136.

[12] T. Mautor, C. Roucairol, A new exact algorithm for the solution of quadratic assignment
problems, Discrete Applied Mathematics 55 (1994), 281{293.

[13] L. G. Mitten, Branch-And-Bound Methods: General Formulation And Properties, Op-
erations Research, 18 (1970), 24{34.

[14] M. Perregaard and J. Clausen, Solving Large Job Shop Scheduling Problems in Parallel,
to appear in Annals of OR.

http://www.imm.dtu.dk/~sk/qaplib/

	Introduction
	Branch and Bound as an interface between two worlds
	The Quadratic Assignment Problem
	The Gilmore-Lawler Bound
	The branching rule of Mautor and Roucairol
	Finding a first feasible solution

	The library ZRAM of parallel search algorithms
	Dynamic load balancing
	Checkpointing and dynamic modification of the number of processors
	The estimator

	Computational results
	Hardware: NEC Cenju-3 and Intel Paragon
	Standard test instances from the QAPLIB
	Quality of the ZRAM estimator for the QAP
	Load balancing
	Speedup
	Solution of 10 previously unsolved QAP instances

	Conclusion
	References

