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Facet generation up to symmetry

Facet enumeration up to symmetry

Definition

Linear transformation A is a restricted automorphism for cone(V ) if

{Av | v ∈ V } = V

Aut(V ) denotes the group of restricted automorphisms of cone(V ).
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Facet generation up to symmetry

Facet enumeration up to symmetry

Definition

Linear transformation A is a restricted automorphism for cone(V ) if

{Av | v ∈ V } = V

Aut(V ) denotes the group of restricted automorphisms of cone(V ).

Problem

Given V ⊆ Rd , Aut(V ).

Find One representative of each orbit of facet defining inequalities
for cone(V ).
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Bases and the basis graph Basis Graph

Bases and Orbits

basis (r − 1) rays (d vertices)
spanning a facet.

orbits Aut(P) acts on bases
000

010

100001

110011

101
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Bases and the basis graph Basis Graph

Exploring the Basis Graph

pivot C ′ = C \ { l } ∪ { e }
such that C ′ is a basis.

basis graph nodes = bases, edges
= pivots
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Bases and the basis graph Basis Simplicial Polytopes

Wreath products

Wreath products

Let P = conv(v1 . . . vm) ⊂ Rd . Let
Q = conv(w1 . . .wn) ⊂ Re .

PoQ = conv



P 0 0 0
0 P 0 0
0 0 P 0

. . .

0 0 0 P
w1 w2 w3 wn


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Roughly, Aut(Q) acts on “big
columns” and Aut(P) within them.
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Wreath products

Wreath products

Let P = conv(v1 . . . vm) ⊂ Rd . Let
Q = conv(w1 . . .wn) ⊂ Re .

PoQ = conv



P 0 0 0
0 P 0 0
0 0 P 0

. . .

0 0 0 P
w1 w2 w3 wn



Roughly, Aut(Q) acts on “big
columns” and Aut(P) within them.

[−1, 1] o [−1, 1]
(courtesy of Joswig and Lutz (2005))
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Bases and the basis graph Basis Simplicial Polytopes

Wreath Products of Cross Polytopes

Example

Let Ck = conv{±e1, . . . ,±ek }. Let P = Cd o Ce .

I P has dimension D = 2de + e and 4de ∼ 2D vertices

I P has 2(d+1)e facets, each containing 3de ∼ 1.5D vertices

I P has one orbit of vertices, facets, and (D − 1)-bases.

Wreath Products of
Cross Polytopes:

comparison with lex pivoting
 and double description

dimension
10 20 30 40 50 60

cp
ut

im
e

1s

10s

1m

4m

30m
1h
2h

1d

1w
12d

lrs

cdd

symmetric pivoting
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Bases and the basis graph Orbitwise Degenerate Polytopes

Orbitwise Degenerate Polytopes

Dimension Triangulation 4s Basis Orbits

Cut 10 (n = 5) 496 2
15 (n = 6) 186636 6300

4 48 4
5 240 17

Cubes 6 1440 237
7 10080 9892
8 80640 > 209000
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Perturbation Valid Perturbation

Valid Perturbation

Definition

Ṽ is a valid perturbation of V if ∃ν(·) : V ↔ Ṽ
such that ∀W ⊆ V ,

1. If ν(W ) is linearly dependent then W is.

2. If ν(W ) is extreme for Ṽ then W is
extreme for V .

1 5

6

84

3

2

7
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Perturbation Symmetry preserving perturbation

Symmetry preserving perturbation

Proposition

I Let V ⊂ Rd . V1, . . . ,Vk the
orbits of V under H, and u be a
fixed point for H,

I There exists ε1 � · · · � εk ≥ 0
such that

V ′ =
⋃
j

(Vj ± εju)

is a valid perturbation of V and
H ≤ Aut(V ′).

u
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Perturbation Symmetry preserving perturbation

Affine Orbitwise Perturbation

Perturbation by Scaling

Linear Affine Name

(p, 1) + ε(0, . . . , 0, 1)
p

1 + ε
push

(p, 1)− ε(0, . . . , 0, 1)
p

1− ε pull

v

εu

v

−εu

v′ v′

(0, 1)

(0, 0)

u
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Perturbation Symmetry preserving perturbation

Affine Orbitwise Perturbation

Perturbation by Scaling

Linear Affine Name

(p, 1) + ε(0, . . . , 0, 1)
p

1 + ε
push

(p, 1)− ε(0, . . . , 0, 1)
p

1− ε pull

1 5

6

84

3

2

7

push(1, 8)
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Perturbation Symmetry preserving perturbation

Affine Orbitwise Perturbation

Perturbation by Scaling

Linear Affine Name

(p, 1) + ε(0, . . . , 0, 1)
p

1 + ε
push

(p, 1)− ε(0, . . . , 0, 1)
p

1− ε pull

1 5

6

84

3

2

7

pull(2, 3, 5, 8)
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Perturbation Example: cubes

Linear Ordering Triangulation

Definition

I Let I d = [−1, 1]d . Let e = (1, . . . , 1).

I For each ρ ∈ Sym(d), there is a path [ρ] from
−e to e.

I Define ∆ρ as conv[ρ].

I The linear ordering triangulation of bdy I d is
the intersection of bdy I d with all ∆ρ

Proposition

Hd = stab(Aut(I d), {−e, e }) acts transitively on
the l.o.t. of bdy I d .

(−1,−1,−1) (1,−1,−1)

(1, 1, 1)

(1, 1,−1)

[(1, 2, 3)]
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Perturbation Example: cubes

Linear Ordering Perturbation

Example

Let Ĩ d denote the Hd -orbitwise
pulling of I d in order induced by
ω(v) = min(eT v ,−eT v).

I bdy Ĩ d ≡ the l.o.t. of bdy I d .

I bdy Ĩ d has one orbit of simplicial
facets under Hd ≤ Aut(Ĩ d).

−3 −1

−3

−1

−1

−1

−1

−1
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I bdy Ĩ d has one orbit of simplicial
facets under Hd ≤ Aut(Ĩ d).
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I bdy Ĩ d ≡ the l.o.t. of bdy I d .
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Perturbation Finding good subgroups

Example: E7 root lattice contact polytope

Contact Polytope for E7 root lattice

Orbits

Dimension 8
Group Order 2903040

Vertices 126 1
Facets 632 2
lrs ∆’s 20520

bases 161
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Perturbation Finding good subgroups

What makes a good subgroup?
ba

si
s 

or
bi

ts

32

64

80

160	

320

640

1280

2163

subgroup order

16
8

72
0

51
84

0

80
64

0

72
0

16
8

72
0

10
8033
6

14
4033
6

14
4033
6

21
6033
6

28
8036
0

38
4036
0

50
40

76
80

11
52

0

20
16

0

67
2

23
04

0

40
32

0

2 orbits

3 orbits

4 orbits

5  orbits

more orbits

generator orbits
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What makes a good subgroup?
cp

ut
im

e

10s

1m

4m

30m

1h

2h

1d

subgroup order

16
8

72
0

51
84

0

80
64

0

10
36

8072
0

16
8

72
0
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0

33
6

14
4033
6

14
40

19
2033
6

21
6033
6

28
80

38
4036
0

38
40

50
4036
0

50
40

76
80

10
08

0

20
16

0

23
04

0

40
32

0

51
84

0

2 orbits

3 orbits

4 orbits

5  orbits

6 orbits

more orbits

generator orbits
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Conclusions

Conclusions

I For certain special cases, pivoting works well for facet generation
under symmetry.

I The question of what polytopes have symmetric triangulations is an
interesting one.

I Simple heuristics exist to find subgroups with desired size and number
of input orbits; more ideas are probably needed to find effective
triangulations.
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