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Facet generation up to symmetry

Facet enumeration up to symmetry

Definition
Linear transformation A is a restricted automorphism for cone(V) if

{Av|veV}=V

Aut(V) denotes the group of restricted automorphisms of cone( V).

Problem

Given V C RY, Aut(V).
Find One representative of each orbit of facet defining inequalities
for cone(V).
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Let P = conv(vy...vpn) C RY. Let
Q = conv(ws ... w,) C Re.

P 0 O 0
0O P O 0
0O 0 P 0
P1Q = conv
0 0 O P
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Roughly, A_utﬁ) acts on ‘big
columns” and Aut(P) within them.
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Bases and the basis graph

Wreath products

Wreath products

Let P = conv(vy ... vy) C RY. Let
Q = conv(wj ... w,) C RE.

[P 0 O 0]
0O P O 0
0O 0 P 0
P1@Q = conv
0O 0 O P
(w1 we w3 W |
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Basis Simplicial Polytopes

Roughly, Aut(Q) acts on “big
columns” and Aut(P) within them.

1ol

M'e(-1)
.0@1
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[_17 1] ! [_17 ]-]
(courtesy of Joswig and Lutz (2005))
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Bases and the basis graph Basis Simplicial Polytopes

Wreath Products of Cross Polytopes

Let Cx = conv{ ter,...,ter }. Let P = C4 Ce.
» P has dimension D = 2de + e and 4de ~ 2D vertices
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Bases and the basis graph Basis Simplicial Polytopes

Wreath Products of Cross Polytopes

Let Cx = conv{ ter,...,ter }. Let P = C4 Ce.
» P has dimension D = 2de + e and 4de ~ 2D vertices

» P has 2(d+1)e facets, each containing 3de ~ 1.5D vertices
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Bases and the basis graph Basis Simplicial Polytopes

Wreath Products of Cross Polytopes

Bample
Let Cx = conv{ ter,...,ter }. Let P = C4 Ce.
» P has dimension D = 2de + e and 4de ~ 2D vertices
> P has 2(9*1)e facets, each containing 3de ~ 1.5D vertices
» P has one orbit of vertices, facets, and (D — 1)-bases.
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Bases and the basis graph Basis Simplicial Polytopes

Wreath Products of Cross Polytopes

Let Cx = conv{ ter,...,ter }. Let P = C4 Ce.
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Dimension  Triangulation As Basis Orbits

Cut 10 (n=05) 496 2
15 (n = 6) 186636 6300
4 48 4
5 240 17
Cubes 6 1440 237
7 10080 9892
8 80640 > 209000



V is a valid perturbation of V if I(-): V — V3 7
such that VW C V,

1. If (W) is linearly dependent then W is.

2. If v(W) is extreme for V then W is 2 6
extreme for V.
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V is a valid perturbation of V if Iu(-): V = V3 7
such that VW C V,

1. If (W) is linearly dependent then W is.

2. If u(W) is extreme for V then W is 2 6
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V is a valid perturbation of V if Iu(-): V = V3 7

such that VW C V,
1. If (W) is linearly dependent then W is.

2. If u(W) is extreme for V then W is 2 . 6
extreme for V.




Symmetry preserving perturbation

» Let V C RY. Vi,..., Vi the
orbits of V under H, and u be a
fixed point for H,

There existse1 > --- > ¢, >0
such that

V' =V £ &ju)

J

is a valid perturbation of V' and
H < Aut(V').
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Proposition
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Linear Affine Name
p
1 0,...,0,1 h
(p,1)+€(0,...,0,1) T+ PUs
(p,1) —(0,...,0,1) 156 pull

pull(2,3,5,8)




(1,1,1)

» Let 19 =[-1,1]9. Lete=(1,...,1).
» For each p € Sym(d), there is a path [p] from

—e to e. (1,1,-1)

> Define A, as conv|p].

» The linear ordering triangulation of bdy /19 is
the intersection of bdy /¢ with all A,

(—=1,-1,—1) (1,-1,-1)

[(1,2,3)]
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(1,1,1)

» Let 19 =[-1,1]. Lete=(1,..

» For each p € Sym(d), there is a path [p] from
—etoe.

» Define A, as conv|p].

» The linear ordering triangulation of bdy /19 is
the intersection of bdy /¢ with all A,

_ (-1,-1,-1) (1,-1,-1)
Hy = stab(Aut(/9), { —e, e }) acts transitively on

ACEE!
the l.o.t. of bdy /9. (123



Perturbation Example: cubes

Linear Ordering Triangulation

Definition

> Let /19=[-1,1]. Lete=(1,...,1).

» For each p € Sym(d), there is a path [p] from
—etoe.

> Define A, as conv[p].

» The linear ordering triangulation of bdy /9 is
the intersection of bdy /9 with all A,

Proposition

Hy = stab(Aut(/9),{ —e,e}) acts transitively on
the l.o.t. of bdy /9.
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Perturbation

Linear Ordering Perturbation

Let 79 denote the H4-orbitwise

pulling of /9 in order induced by

w(v) = min(eTv,—eTv).

Example: cubes

—1 -3
—1
—1
—1 -1
-3 -1
June 19, 2008 12 /15
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Example: cubes

Let 79 denote the Hy-orbitwise
pulling of /9 in order induced by
w(v) = min(eTv, —e'v).

» bdy /¢ = the l.o.t. of bdy /7.

> bdy /¢ has one orbit of simplicial
facets under Hy < Aut(/9).
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Perturbation Example: cubes

Linear Ordering Perturbation

’
’
’
’
’

Let 79 denote the Hy-orbitwise .
pulling of /9 in order induced by J/
w(v) = min(eTv,—eTv).

» bdy 79 = the l.o.t. of bdy /7.

» bdy /9 has one orbit of simplicial
facets under Hy < Aut(/9). S/
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Perturbation

Linear Ordering Perturbation

Let 79 denote the H4-orbitwise
pulling of /9 in order induced by
w(v) = min(eTv,—eTv).

» bdy 79 = the l.o.t. of bdy /7.

» bdy /¢ has one orbit of simplicial

facets under Hy < Aut(19).
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Let 79 denote the Hy-orbitwise
pulling of /9 in order induced by
w(v) = min(eTv, —e'v).

» bdy /¢ = the l.o.t. of bdy /7.

» bdy /9 has one orbit of simplicial
facets under Hy < Aut(/9).




Orbits

Dimension
Group Order
Vertices
Facets

Irs A's
bases

8
2903040
126

632
20520

161



Perturbation Finding good subgroups

What makes a good subgroup?

generator orbits
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» For certain special cases, pivoting works well for facet generation
under symmetry.

The question of what polytopes have symmetric triangulations is an
interesting one.

Simple heuristics exist to find subgroups with desired size and number
of input orbits; more ideas are probably needed to find effective
triangulations.
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Conclusions

Conclusions

» For certain special cases, pivoting works well for facet generation
under symmetry.

» The question of what polytopes have symmetric triangulations is an
interesting one.

» Simple heuristics exist to find subgroups with desired size and number
of input orbits; more ideas are probably needed to find effective
triangulations.
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