Building Algorithmic Polytopes

David Bremner
with D. Avis, H.R. Tiwary, and O. Watanabe
December 16, 2014

Outline

Matchings in graphs

Given G = (V,E), M C E is called a
matching

HeeM|vee} <1 VveV

A matching M is a perfect matching
it [M] = [V]/2

Edmonds’ Matching Polytope

Convex Hull Description

EM, = conv{ x(M) € {0, 1}(2) | M matching in K,}

Inequality Description

Xe >0 ecE
ergl vev
esv
> xe<(IW]-1)/2 W cV, |W|odd

Extended Formulation

Definition
An extended formulation (EF) of a polytope P C R? is a
linear system

Ex+Fy=g,y2>20

such that P ={x | Jy Ex+ Fy = g}

Extended Formulation

Definition
An extended formulation (EF) of a polytope P C R? is a
linear system

Ex+Fy=g,y2>20

such that P ={x | Jy Ex+ Fy = g}

Theorem (RothvoR2013)

Any extended formulation of Edmonds’ matching polytope
EM, has 24" inequalities.

Outline

Polytopes for decision problems

Consider a decision problem defined
by its characteristic function

(0,1,1)
1 x char. vec. of YES instance
U(x) = :
0 otherwise
(1,0,1)

For each input size g we can define a
polytope
P,) = conv{(x. v(x)) : x € {0,1}7} =

(0,0,0)

0/1-property

Definition
Let Q@ C [0, 1]9%" be a polytope. We
say that Q has the x-0/1 property if
» For each x in {0,1}9 there is a
unique vertex (x,y) of Q, and

» (x,y) € {0,1}9*%.

L1

Weak Extended Formulation

Let Q@ C [0,1]9+1+r. Vx € {0,1}9, 0 < § < 1/2, define
C = (2)_(, — 1),

z* = max ZC;X;+(5W—]1T)_((LP)
(x,w,s) € Q ., (1,1,1)
Q is a weak extended formulation /
(WEF) of P(1, q) if Q has the x-0/1

property, and /
|

(0,0,0)

/o

Weak Extended Formulation

Let Q@ C [0,1]9+1+r. Vx € {0,1}9, 0 < § < 1/2, define
C = (2)_(, — 1),

z* = max ZC;X;+(5W—]1T)_((LP)
(x,w,s) € Q ., (1,1,1)
Q is a weak extended formulation /
(WEF) of P(1, q) if Q has the x-0/1

property, and
» If 1)(X) = 1 the solution to (77) 8[

is unique and z* = ¢.

/o

(0,0,0)

Weak Extended Formulation

Let Q@ C [0,1]9+1+r. Vx € {0,1}9, 0 < § < 1/2, define
C = (2)_(, — 1),

z* = max ZC;X;+(5W—]1T)_((LP)
(x,w,s) € Q ., (1,1,1)
Q is a weak extended formulation /
(WEF) of P(1, q) if Q has the x-0/1

property, and
» If 1)(X) = 1 the solution to (77) 8[

is unique and z* = ¢.
» Otherwise z* < ¢ and /4

Vo <e(g+r), z¥ =0 and the w

solution to (?7) is unique.

(0,0,0)

Outline

Integer Register machines (Cook and Reckhow)

Operations

> X+ y+tz

v

x < ylz]

v

x[y] « z

v

if x>0 goto L (L is a constant line number)

Integer Register machines (Cook and Reckhow)

Operations

> X+ y+tz

- x < y[2]

> Xly] - z

» if x >0 goto L (L is a constant line number)

Register size and costs

» registers can hold arbitrarily large/small integers

» cost of operations is proportional to log, of operand size

Binary register machines

Bounding operand sizes

» assume running time is bounded by p(n)
» from cost model |x| < 2P()

» often we know |x| < M < 2P(")

» define a parameter § = log, M

Binary register machines

Bounding operand sizes

» assume running time is bounded by p(n)
» from cost model |x| < 2P()

» often we know |x| < M < 2P(")

» define a parameter § = log, M

Binary registers

» Arbitrary number of named (3-bit integer registers

» Arbitrary number of named arrays of integer registers,
each containing at most 2° elements.

Boolean registers and 2D arrays

Boolean registers

» operations on 1-bit registers turn out to be much easier
» E.g. sets can be represented arrays of booleans.

Boolean registers and 2D arrays

Boolean registers

» operations on 1-bit registers turn out to be much easier
» E.g. sets can be represented arrays of booleans.

2D arrays

» Arbitrary number of named 2D arrays of boolean
registers, containing at most 2% x 27 elements

» handy for representing graphs

ASM code

Boolean operations
> X yoz
o€ {V,A,®,=}

> x <yl x <y, K]
» x[i] <z, x[i,j] <y

ASM code

Boolean operations Integer operations
> X< yoz » i +1
OE{\/,/\,ED,:} ’X(—I.:_j

v

> x <yl x <y, K]
» x[i] <z, x[i,j] <y

i < j[K]

ilj] « [K]

v

ASM code

Boolean operations Integer operations
> X< yoz » i +1
OE{\/,/\,ED,:} ’X(—I.:_/'
> x <yl x < ylj k] > i j[K]
> x[i] <=z, x[i,j] <y > i[j] « [K]

Control Flow

» if x goto L (L is a constant line number)
» goto L

» return wQv

Outline

Block structured imperative language

SPARKS
» named after Horowitz-Sahni FORTRAN preprocessor

» close to traditional pseudocode

» generates easy to parse ASM code

Syntax

» control flow: if-then-else/while/for
» compound expressions

» type/input/output declarations

input bool x
input bool y
output bool w
if x then
if y then
return w @ 1
else
return w @ 0
endif
else
return w @ 0
endif

input bool x
input bool y
. output bool w
. set guard0 copy x
. set guard0 not guardO
. 1f guard0 else0
. set guardl copy y
. set guardl not guardl
. if guardl elsel
2 return w copy 1
elsel nop
3 return w copy O
else0 nop
4 return w copy O

for

set i copyw 1

set sentinelO copyw 3

set sentinel0 incw sentinel0
for i <- 1,3 do for0 set test0 eqw 1 sentinell
if test0 done0

nop
done . nop
. set i incw i
. goto for0

done0 nop

Outline

GMPL as target

» inequalities are output as Gnu Math Programming
Language
» preservation of names, array structure, helps debugging

» Can be solved directly by glpsol, or transformed to MPS /
matrix form.

Polytopes from ASM

Inspiration

» Modelled on proof of Cook’s theorem from [HS-1978]
» reduction of simplified SPARKS code to Boolean SAT

Inequality groups
» C initialization
» D begin at the beginning
» E one line at a time
» F control flow

» G memory (non)-updates

Polytopes from ASM

Inspiration

» Modelled on proof of Cook’s theorem from [HS-1978]
» reduction of simplified SPARKS code to Boolean SAT

Inequality groups

» C initialization Parameters

» From ASM code A(n, §),
polytopes Q(A(n, 3)).

» D begin at the beginning
» E one line at a time
» F control flow

» G memory (non)-updates

Adding time dimension

» each variable is given an extra time dimension

bool x

int y

array A[10]
matrix M[7,7]

var
var
var
var

x{0.
y{0..
A{O..
M{0.

.tmax-13},>=0,<=1;

bits-1,0..tmax-1},>=0,<=1;
10,0..tmax-1},>=0,<=1;

.7,0..7,0. .tmax-1},>=0,<=1;

The step counter

Spi. 4 1 line i of A is being executed at time t
I? - -
0 otherwise

var int i —

set i copyw 1

nop

set temp2 eqw 1 3

set testl not temp2

set testl not testl

if testl 10

set i incw 1

O 00 ~NO Ol W N+~

goto 3

10 nop

Controlled 0/1 property

Definition
Suppose
1. Cx + Dy < e has the x-0/1
property.
2. Cx+ Dy < e+ 1 is feasible for
all (x,y) € {0,1}9.
The system

lz+C+ Dy <e+1

has the (z) controlled x-0/1 property.

—2x+y <0
2x —y <1
y<1
-y <0

basic inequalities for the step counter

(D) Step counter initialization

Instruction 1 is executed at time t = 1.

S[1,1]=1

(E) Unique step execution
A unique instruction is executed at each time t.

/
> Sl =1, 1<t<p(n)
j=1

(F) Inequalities for flow control

Inequalities are generated for each t, 1 < t < p(n), depending
on the instruction at line i

(i) (assignment statement) Go to the next instruction.

S[li,t]=S[i+1,t+1] <0

(F) Inequalities for flow control

Inequalities are generated for each t, 1 < t < p(n), depending
on the instruction at line i

(i) (assignment statement) Go to the next instruction.
S[li,t]=S[i+1,t+1] <0

(ii) (go to k)
S[i,t] — S[k,t+1] <0

(F) Inequalities for flow control

Inequalities are generated for each t, 1 < t < p(n), depending
on the instruction at line i

(i) (assignment statement) Go to the next instruction.
S[li,t]=S[i+1,t+1] <0

(ii) (go to k)
S[i,t] — S[k,t+1] <0

(iii) (return) Loop on this line until time runs out.

S[li,t] = S[i,t+1] <0

(F) Inequalities for flow control

Inequalities are generated for each t, 1 < t < p(n), depending
on the instruction at line i

(i) (assignment statement) Go to the next instruction.
S[li,t]=S[i+1,t+1] <0

(ii) (go to k)
S[i,t] — S[k,t+1] <0

(iii) (return) Loop on this line until time runs out.
S[li,t] = S[i,t+1] <0
(iv) (if c goto k)

S[li,t]+c[t—1] — S[k,t +1] <
Sli,t]—c[t—1] = S[i+1,t+1] <

(G) assignment: s = x
For s = x we generate the two
inequalities:

Sli,t] +x[t —1] —s[t] <
Sl] - xlt — 1] + 5] <

(G) assignment: s = x
For s = x we generate the two
inequalities:

Sli,t] +x[t —1] —s[t] <
S[i,t] — x[t — 1]+ s[t] <

» Note that 'x[t]' makes
sense in place of 's[t]’

» Every unmodified variable
is “carried forward” using
these same inequalities.

(G) Boolean exclusive or
S=X®Dy

S[i,t] + x[t — 1] — y[t — 1] — s[t]
S[i,t] — x[t — 1] — y[t — 1] + s[t]
S[i,t] — x[t — 1] + y[t — 1] — s[t]
S[i, t] + x[t — 1] + y[t — 1] + s[t]

NN NN
W ==

(G) Boolean exclusive or

S=X®Dy
Slit] + x[t =1 —y[t—1] —s[t] < 1
S[lit] = x[t—=1] —y[t —1] +s[t] < 1
Sli,t] =x[t =1] +y[t—=1] —s[t] < 1
Sli,t] +x[t = 1]+ y[t — 1] +s[t] < 3

S[li,t] =1

+x[t — 1] — y[t — 1] < s[t]

s[t] < x[t — 1] + y[t — 1]
—x[t — 1]+ y[t — 1] < s[t]

s[t] <2 —x[t—1] —y[t — 1]

Integer increment g = g + 1

» a second integer variable r holds the carries

ql,t] = q[l,t—1]a®1
r[1,t] = gq[l,t—1]A1
rlj,t] = qli,t—=1Ar[j—1,t] 2<j<p
qli;t] = ql,t=1]&rj -1t 2<;<p

» Each of these equations is enforced with sets of
inequalities

array assignment 1/2

» x < R[m], R has indicies 0..u

Comparison representation of index m

1 otherwise

M(.jt):{o m[t—ll]:j

B

= \/ mlk, t — 1] & bit(j, k)

k=1
For0 < ;<u

Sl]+ pl, t) = M;
5[i7t]_u(j7)+M/

, b
, b

Ul
Ul

<1
<1

array assignment 2/2

inequalities

S[i,t] + x[t — 1] — R[j, t] — Mi[j, t]
S[i, t] — x[t — 1] + R[j, t]| — M[j, t]
S[i,t]+ R[j,t — 1] — R[j, t] + M;[j, t]
S[i,t] — R[j,t — 1] + R[j, t] + Mi[j, t]

INCINCIN N
ST N RS

array assignment 2/2

inequalities

S[i,t] + x[t — 1] — R[j, t] — Mi[j, t]
S[i, t] — x[t — 1] + R[j, t]| — M[j, t]
S[i,t]+ R[j,t — 1] — R[j, t] + M;[j, t]
S[i,t] — R[j,t — 1] + R[j, t] + Mi[j, t]

Sli,t] =1
+x[t —1] — R[j,t] < M), t]
—x[t = 1]+ R[j,t] < M, t]
+R[j,t —1] = R[j,t] < 1-—M]j,t]
—R[j,t—=1]+ R[j,t] < 1-Mj,t]

INCINCIN N
ST N RS

array assignment 2/2

inequalities

S[i,t] + x[t — 1] = R[j, t] — Mi[j, t]
S[i, t] — x[t — 1] + R[}j, t] — Mi[j, t]
S[i,t]+ R[j,t — 1] — R[j, t] + M;[j, t]
S[i,t] — R[j, t — 1] + R[j, t] + M;[}, t]

YA/ A/ANN/AN
NN R =

Sli,t] =1

+x[t —1] = R[j,t] < M, t] Main idea
+Rl, t =1 = R[j,t] < 1-M]j,t] switch between two
—R[j,t =11+ R[j,t] < 1—M{]j,t] assignments

Polytopes that compute

Proposition
» Let A(n,B) be an ASM code with input x € [0,1]" that
terminates by setting w = 1(x).

» Let Q(n,3) be the constructed polytope with extra
variables s;.

Then we have

Polytopes that compute

Proposition
» Let A(n,B) be an ASM code with input x € [0,1]" that
terminates by setting w = 1(x).
» Let Q(n,3) be the constructed polytope with extra
variables s;.
Then we have

1. Q(n, 3) has size polynomial in the running time of A.

Polytopes that compute

Proposition
» Let A(n,B) be an ASM code with input x € [0,1]" that
terminates by setting w = 1(x).
» Let Q(n,3) be the constructed polytope with extra
variables s;.
Then we have
1. Q(n, 3) has size polynomial in the running time of A.

2. For any x* € {0,1}", Q(n, 3) has a unique vertex
(x*, w*, s*) with w* = (x*).

Polytopes that compute

Proposition
» Let A(n,B) be an ASM code with input x € [0,1]" that
terminates by setting w = 1(x).
» Let Q(n,3) be the constructed polytope with extra
variables s;.
Then we have
1. Q(n, 3) has size polynomial in the running time of A.

2. For any x* € {0,1}", Q(n, 3) has a unique vertex
(x*, w*, s*) with w* = (x*).

Proof.

By induction on timestep t.

Weak extended formulations

Proposition

Let A(n,) be an ASM code which solves a decision problem
with characteristic function ¢ : {0,1}" — {0,1}. The
corresponding polytope Q(n,) is a weak extended
formulation for P(1), n).

Weak extended formulations

Proposition

Let A(n,) be an ASM code which solves a decision problem
with characteristic function ¢ : {0,1}" — {0,1}. The
corresponding polytope Q(n,) is a weak extended
formulation for P(1), n).

» Q(n,) has the x-0/1 property (previous proposition)

Weak extended formulations

Proposition

Let A(n,) be an ASM code which solves a decision problem
with characteristic function ¢ : {0,1}" — {0,1}. The
corresponding polytope Q(n,) is a weak extended
formulation for P(1), n).

» Q(n,) has the x-0/1 property (previous proposition)
» The objective function z(x) =) .(2% — 1)x; + ¢ forces
the optimal solution (X, (%), s) for sufficiently small §.

Weak extended formulations

Proposition

Let A(n,) be an ASM code which solves a decision problem
with characteristic function ¢ : {0,1}" — {0,1}. The
corresponding polytope Q(n,) is a weak extended
formulation for P(1), n).

» Q(n,) has the x-0/1 property (previous proposition)
» The objective function z(x) =) .(2% — 1)x; + ¢ forces
the optimal solution (X, (%), s) for sufficiently small §.

» Such a § can be computed quickly.

