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Lattice Models of Protein Folding

Lattices

Lattice

Given linearly independant vectors
B = { b1 . . . bd} in Rd , the lattice

L(B) := {
d∑

i=1

zibi | zi ∈ Z}

e1

e2

Lattice Graphs

Given l.i. B ⊂ Rd , the lattice graph

G (B) = (L(B), { (p, q) : ‖p−q‖ = 1})
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Lattice Models of Protein Folding

Lattice Models

Combinatorial Setting

Polymer A chain C (node sequence) with coloured (classified) nodes.

Lattice A vertex regular (sufficiently large) graph L.

Folding An embedding of C into L.

C

L
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Lattice Models of Protein Folding

Lattice Models

Combinatorial Setting

Polymer A chain C (node sequence) with coloured (classified) nodes.

Lattice A vertex regular (sufficiently large) graph L.

Folding An embedding of C into L.

Energy Model

Energy φ : embedding→ R
Locality φ is usually a function of a small neighbourhood in L.

Optimality Minimum energy embeddings (ground states) are considered
optimal.
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Lattice Models of Protein Folding

Lattice Models: pro and contra

Pro

Physics is hard Global optimization models have Ω(3n) local optima.

Chemistry is lattice-like Close packed proteins are crystal-like.

Thought Experiment Can a small subset of forces explain folding?

Contra

Discrete optimization is hard Computing optimal embeddings is NP-hard.

Approximation is rough Close energy 6⇔ close shape?

Lattice artifacts Crude approximation of shape. Parity. Chirality.
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Lattice Models of Protein Folding

What Lattice, What Energy function?

Lattice

2D square Some interest for ≤ 30 monomers

3D cubic Basic local structures (helix) are 3D.

2D triangular Solve parity problems

Energy Function

I Hydrophobic/Hydrophilic forces by far strongest

I Helical structures can be designed by using only hydrophobicity,

I β-sheets have few local interactions
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Lattice Models of Protein Folding

H–P model

Hydrophobic/Hydrophilic

I Hydrophobic (H) repels water

I Polar (Hydrophilic) (P) attracts water

I Model: H’s attract each other and P’s are neutral

Amino Acid Code Classification

Leucine L H
Serine S P
Glycine G H
Threonine T P
...

...
...
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Lattice Models of Protein Folding

H–P model

Hydrophobic/Hydrophilic

I Hydrophobic (H) repels water

I Polar (Hydrophilic) (P) attracts water

I Model: H’s attract each other and P’s are neutral

H–H contacts

1 contact 1 contact 2 contacts

optimal Maximum number of contacts

stable/degenerate optimal embedding
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Lattice Models of Protein Folding

H–P model

Hydrophobic/Hydrophilic

I Hydrophobic (H) repels water

I Polar (Hydrophilic) (P) attracts water

I Model: H’s attract each other and P’s are neutral

H–H contacts

1 contact 1 contact 2 contacts

optimal Maximum number of contacts

unstable/degenerate Many optimal embeddings
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Lattice Models of Protein Folding

What counts as ”unique”?

I Most lattices have
isometries, i.e. distance
preserving
transformations.

I Isometries preserve
contacts.

I Counting contacts is
oblivious to chirality
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Lattice Models of Protein Folding

Computational Complexity of the H–P model

Algorithmic results

I NP-Complete for 3D (Berger & Leighton 1998)

I NP-Complete for 2D (Crescenzi et al., JCB 1998)

I 3/8-approximation for 3D and 1/4-approximation for 2D (Hart and
Istrail, STOC 1995).

Fight hardness with more restricted problem?

I H-connected optimal embedding.
I 3D NP-hard gadgets have this property
I 2D gadgets do not

I Unique optimal embeddings
I neither 2D nor 3D NP-hard gadgets are stable
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Lattice Models of Protein Folding

The Protein Folding “Paradoxes”

Protein Folding Paradox (Levinthal 1968)

There are an exponential number of foldings (“conformations”),
but proteins fold quickly.

New Improved Protein Folding Paradox (1998)

Finding the optimal folding in the H–P model is NP-complete,
but proteins still fold quickly.
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Lattice Models of Protein Folding

Why care about uniqueness?

Motivations

I An important property of real proteins

I Possible resolution to NP-hardness “paradox”.

I “Sequence design: the hard part is uniqueness” (Dill et al., 1995)

Evidence

Experimental designed polymers have many optimal foldings

Algorithmic designing to fold to a shape is easy. (Kleinberg 1999)

Simulation machine designed H–P-polymers tend to collapse below
design state (Yue et al. 1995)
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Lattice Models of Protein Folding

Simulation Results

I About 2% of sequences up to length 18 length have unique optimal
foldings

13 14 15 17

18 19 21 22
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Graph Theoretic Preliminaries

Terminology

I A pair of H nodes adjacent in an embedding, but not on the chain P,
is called a contact

I contact graph V = H nodes; E = contacts

I The conformation graph consists of the edges of polymer P, along
with the contacts.

embedding contacts conformation graph

David Bremner (UNB) (Non)-Degenerate H–P ground states 15 / 36



Graph Theoretic Preliminaries

Terminology

I A pair of H nodes adjacent in an embedding, but not on the chain P,
is called a contact

I contact graph V = H nodes; E = contacts

I The conformation graph consists of the edges of polymer P, along
with the contacts.

embedding contacts conformation graph

David Bremner (UNB) (Non)-Degenerate H–P ground states 15 / 36



Graph Theoretic Preliminaries

Terminology

I A pair of H nodes adjacent in an embedding, but not on the chain P,
is called a contact

I contact graph V = H nodes; E = contacts

I The conformation graph consists of the edges of polymer P, along
with the contacts.

embedding contacts conformation graph

David Bremner (UNB) (Non)-Degenerate H–P ground states 15 / 36



Graph Theoretic Preliminaries

Parity and Lattice Graphs

Parity

Define the parity of lattice point∑
zibi as

∑
zi mod 2.

Bipartite Lattice Graphs

In the square and cubic lattice
graphs:

I Every edge changes parity.

I Contacts exist only between H
nodes of different parity.

I No odd cycles are possible.

I The maximal contact graph of a
closed chain consists of disjoint
even cycles.
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Chains with degenerate ground states

Degenerate Ground States

Setting

I 2D square lattice

I open or closed chains

I Degenerate ground state ≡ many optimal embeddings

Fact

Any embedding of Pk is optimal
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Chains with degenerate ground states

Fact

Any optimal embedding of the closed chain (PHP)4k has a contact graph
consisting of k four cycles.

Skip proof

Proof.

Consider a big contact graph cycle. . .

HPH PHH PHPH
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Chains with degenerate ground states

Fact

There are as many optimal embeddings of (PHP)4k as there are
(embeddings of) k-node lattice trees.
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Chains with degenerate ground states

Fact (Stanley)

There are Ω((1 +
√

2)k) embeddings of k-node lattice trees.

I and probably lots more (Ω
(

3.79k

k

)
)
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Globular Stable Chains

Missing Contacts and Perimeter

Missing Contact Neighbouring lattice point that is neither

I An H node
I nor a P node adjacent on chain.

Pseudocontacts H-H neighbours (on chain or otherwise). For a given
chain, maximizing contacts is equivalent to

I maximizing pseudocontacts, or
I minimizing missing contacts.
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Globular Stable Chains Square Lattice

Square Contact Graphs

Fact

A chain with s2 H nodes embedded in the square lattice has at most
2s2 − 2s pseudocontacts, and this is achieved exactly when H nodes are
embedded in a s × s square grid.

x

y

min 2x + 2y

subject to

x · y ≥ s2

x ≥ 1

y ≥ 1

-5 5 10 15 20

-5

5

10

15

20
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Globular Stable Chains Square Lattice

Uniquely achieving the s × s square

I Start by fixing the corners

I Make short loops of H nodes

I Repeat

David Bremner (UNB) (Non)-Degenerate H–P ground states 25 / 36



Globular Stable Chains Square Lattice

Uniquely achieving the s × s square

I Start by fixing the corners

I Make short loops of H nodes

I Repeat

David Bremner (UNB) (Non)-Degenerate H–P ground states 25 / 36



Globular Stable Chains Square Lattice

Uniquely achieving the s × s square

I Start by fixing the corners

I Make short loops of H nodes

I Repeat

David Bremner (UNB) (Non)-Degenerate H–P ground states 25 / 36



Globular Stable Chains Triangular Lattice

Hexagonal Contact Graphs

Fact

A chain 3s2 − 3s + 1 H nodes embedded in the triangular lattice has at
most 9s2 − 15s + 6 pseudocontacts, and this is achieved exactly when the
H nodes are embedded in a side-length s hexagonal grid.
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Globular Stable Chains Triangular Lattice

Uniquely realizing the hexagon

I Sides can be fixed

I but with wiggle

I Wiggle can be fixed

I And the interior filled
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Non-globular Stable Chains

Outline
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Non-globular Stable Chains Closed Chain

Closed Chain Examples

Am = (HP)m

Sk = P Adk/2e P Abk/2c
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Non-globular Stable Chains Closed Chain

Closed Chain Examples

Am = (HP)m

Sk = P Adk/2e P Abk/2c

k = 2 k = 8 k = 9
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Non-globular Stable Chains Closed Chain

Observation

There exists an embedding of Sk with 2 missing contacts.

Corollary

In any optimal embedding of Sk , both monochrome edges are on the
bounding box.
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Non-globular Stable Chains Closed Chain

Internal and External Contacts

Definition

An exterior contact in an embedding of a
closed chain C is one that does not
subdivide the interior of C .

Lemma

There are no exterior contacts in an optimal
embedding of Sk .

odd
even

changes bounding box
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Non-globular Stable Chains Closed Chain

The conformation graph of Sk

Lemma

Over all optimal embeddings of Sk ,
the conformation graph is unique.

Theorem

There is a the unique optimal
embedding (up to isometries) of Sk .

Proof.

Start with one of the four cycles, the
embedding is forced.
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Non-globular Stable Chains Open Chains

Open Chains

Zk = (HP)dk/2e(PH)bk/2c

Theorem

Z2j has a unique optimal embedding for all j ≥ 1.

Skip proof

Proof.

(Sketch)

1. How can H nodes appear on the bounding box?

2. Both endpoints on the bounding box, and in contact.

3. The monochrome edge is on the bounding box.

4. The open case reduces to the closed case
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Conclusions

Open and Closed Questions

Open Questions

1. Do real proteins fold uniquely in the H–P model?

2. Asymptotically, what fraction of n-node H–P-sequences fold uniquely?

3. Is H–P sequence folding still NP-complete when restricted to “nice”
sequences?

Not so open questions

I There exist stable H–P trees in 3D.

I There are stable chains in the 2D H-anything model.

I Minimal area and maximum contacts are not always simultaneously
achievable.
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Conclusions

Credits

I Inspired by an article of Brian Hayes in American Scientist

I Initiated at a workshop on Molecular Reconfiguration organized by
Godfried Toussaint.

I Non-globular examples with Oswin Aichholzer, Erik Demaine, Vera
Sacristan and Mike Soss.

I Globular examples with Henk Meijer and Jit Bose
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